Graphical Models

Lecture 11:

Clique Trees

Andrew McCallum mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Inference

- Last two lectures: variable elimination
 - Sum out variables one at a time.
- Today: alternative algorithms.
 - Also based on factors.
 - Central data structure: clique tree.

Formalisms

Formalisms

Lecture 5

Lecture 5

Clique Tree

Every maximal clique becomes a vertex.

Connect vertices with overlapping variables

Tree structure? then "Clique Tree"

(If graph was triangulated, always get a tree structure.)

Lecture 5

Clique Tree

"Sep-set" = {A, D}

For each edge, intersection of r.v.s separates the rest in \mathcal{H} .

"Cluster Graph"

- A cluster graph for a set of factors Φ over X is an undirected graph, each of whose nodes i is associated with a subset $\mathbf{C}_i \subseteq X$.
- A cluster graph must be "family preserving": each factor $\varphi \in \Phi$ must be associated with a cluster \mathbf{C}_i (denoted $\alpha(\varphi)$), such that $\mathsf{Scope}[\varphi] \subseteq \mathbf{C}_i$.
- Each edge between a pair of clusters C_i and C_j is associated with a **sepset** $S_{i,j} \subseteq C_i \cap C_j$.
- "Cluster Tree" a cluster graph that is a tree.

"Running Intersection" Property

Cluster tree T (with vertices C_i...) has the running intersection property if,
 whenever there is a variable X such as X ∈ C_i and X ∈ C_j,
 then X is also in every cluster in the (unique) path in T between C_i and C_j.

"Clique Tree" Definition

aka "Junction Tree," or "Join Tree"

- Given an undirected graph \mathcal{H} , a tree \mathcal{T} is a **clique tree** for \mathcal{H} if:
 - Each node in ${\mathcal T}$ corresponds to a clique in ${\mathcal H}$
 - Each maximal clique in ${\mathcal H}$ is a node in ${\mathcal T}$
 - Each sepset $S_{i,j}$ separates the variables strictly on one side of the edge from the variables on the other side.

In other words

Clique Tree = cluster tree that satisfies running intersection property.

How to Obtain a Clique Tree Option 1

- Start with factor graph or undirected graph.
- Do variable elimination. On iteration i:
 - Let ψ_i be the intermediate factor
 - Let τ_i be the marginalized factor
 - Let \mathbf{C}_i be the set of variables involved in ψ_i
- One node per \mathbf{C}_i , edge \mathbf{C}_i - \mathbf{C}_j when τ_i gets used in computing ψ_i .

•
$$\psi_1 = \varphi_{FAS} \cdot \varphi_{SR} \cdot \varphi_{SH}$$

•
$$\psi_1 = \varphi_{FAS} \cdot \varphi_{SR} \cdot \varphi_{SH}$$

•
$$\psi_1 = \varphi_{FAS} \cdot \varphi_{SR} \cdot \varphi_{SH}$$

•
$$\tau_1 = \sum_S \psi_1$$

•
$$\psi_1 = \varphi_{FAS} \cdot \varphi_{SR} \cdot \varphi_{SH}$$

•
$$\tau_1 = \sum_S \psi_1$$

•
$$\Psi_2 = \tau_1$$

•
$$\psi_2 = \tau_1$$

• $\tau_2 = \sum_R \psi_2$

•
$$\Psi_2 = \tau_1$$

•
$$\psi_2 = \tau_1$$

• $\tau_2 = \sum_R \psi_2$

- $\psi_3 = \tau_2$ $\tau_3 = \sum_H \psi_3$

•
$$\psi_3 = \tau_2$$

• $\tau_3 = \sum_H \psi_3$

•
$$\tau_4 = \sum_A \psi_3$$

•
$$\tau_4 = \sum_A \psi_3$$

•
$$\psi_5 = \tau_4 \, \varphi_F$$

• Eliminate F.

 τ_5

•
$$\psi_5 = \tau_4 \, \varphi_F$$

Alternative Ordering $\phi_{\scriptscriptstyle F}$ φ_{A} • {H, R, S, A, F} φ_{FAS} Flu All. S.I. φ_{SH} HS R.N. H. SR SAF FA

How to Obtain a Clique Tree Option 1

- Start with factor graph or undirected graph.
- Do variable elimination.
- One node per C_i , edge C_i - C_j when τ_i gets used in computing ψ_j .
- Result is always a clique tree!
 - Running intersection property.
 - Different orderings will give different clique trees.

Reducing a Clique Tree

- Given a clique tree \mathcal{T} for a set of factors Φ , there is always a reduced clique tree \mathcal{T} such that
 - all clique-vertices in \mathcal{T} are in \mathcal{T}
 - no clique vertex in \mathcal{T} is a subset of another.
- Construction exploits the running intersection property.

Reduced Clique Tree

Reduced Clique Tree

How to Obtain a Clique Tree *Option 2*

- 1. Given factors, construct the undirected graph.
- 2. Triangulate to get a chordal graph.
- 3. Find maximal cliques in the chordal graph.
- 4. Construct a tree from the "cluster graph" of maximal cliques.

Step 2: Triangulate

- NP-hard in general to get the smallest one.
- Use heuristics.

Step 3: Find Maximal Cliques

- Maximum cardinality search: gives an induced graph with no fill edges (assuming chordal graph as input, which we have).
- We proved last time that every maximal clique in the induced graph equates to the scope of an intermediate factor from VE.

Other approaches exist.

Maximum Cardinality Search for VE Ordering

- Start with undirected graph on X, all nodes unmarked.
- For i = |X| to 1:
 - Let Y be the unmarked variable in X with the largest number of marked neighbors
 - $-\pi(Y)=i$
 - Mark Y.
- Eliminate using permutation π .

Lecture 10

• First node is arbitrary.

• First node is arbitrary.

• 1: A, S

• 0: R, H

• 2: A

• 1: R, H

• 1: R, H

• 1: H

• Order: {H, R, A, S, F}

How to Obtain a Clique Tree *Option 2*

- 1. Given factors, construct the undirected graph.
- 2. Triangulate to get a chordal graph.
- 3. Find maximal cliques in the chordal graph.
- 4. Construct a tree from the "cluster graph" of maximal cliques.
 - Results from VE with the ordering from maximum cardinality search; or use maximum spanning tree (edge weights = sepset sizes).

Example (Reduce)

Now You Know ...

How to construct a clique tree.

Also called a "junction tree" or a "join tree."

Running Intersection Property

• For connected clique-vertices \mathbf{C}_i and \mathbf{C}_j , the sepset $\mathbf{S}_{i,j}$ is $\mathbf{C}_i \cap \mathbf{C}_j$, and it separates the variables on the \mathbf{C}_i side from those on the \mathbf{C}_j side.

Running Intersection Property

For each edge, intersection of r.v.s separates the rest in \mathcal{H} .

Lecture 5

Family Preservation

 Every factor in the original graph is associated with one clique-vertex in the clique tree.

Family Preservation ϕ_{F} φ_{A} Example φ_{FAS} Flu All. S.I. φ_{SH} φ_{SR} φ_{SR} SR R.N. Н. φ_{FAS} φ_{SH} φ_{A} ϕ_{F} HS SAF FA

Inference

- Last two lectures: variable elimination
 - Sum out variables one at a time.
- Today: alternative algorithms.
 - Also based on factors.
 - Central data structure: clique tree.

What are these algorithms?

Clique Trees and Variable Elimination

- Each product-factor ψ belongs to a clique-vertex.
- Each τ is a "message"
 from one clique-vertex to another.

• {H, R, S, A, F}

 φ_{F}

 φ_{A}

Just happens to be that in this graph with this ordering there is a one-to-one correspondence between original phis and product factors psi, because there was only one factor touching each variable-to-eliminate.

Messages

 Notice that the variable elimination ordering implies a direction to the edges.

Messages go "upstream."

 This leads to a clique-tree-centric view of VE, in which the same calculations happen as in VE.

 φ_{F}

 φ_{A}

- {H, R, S, A, F}
- Reduced version

- {H, R, S, A, F}
- Reduced version
- Initial potentials

$$\nu_{\rm FAS} = \phi_{\rm FAS} \phi_{\rm A} \phi_{\rm F}$$

Go through math that gets done for VE here.

 Calculate initial potentials for each cliquevertex.

$$\nu_j(\boldsymbol{C}_j) = \prod_{\phi \in \Phi_j} \phi$$

- Choose an arbitrary **root** clique C_r . This imposes a directionality on the graph (think of the root as a sink).

 Ordering can be different from the VE ordering that might have created the clique tree.
- Pass messages "upstream":

$$\delta_{i \to j} = \sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \nu_i \prod_{k \in \text{Neighbors}_i \setminus \{j\}} \delta_{k \to j}$$

• {H, R, S, A, F}

 φ_{A}

 ϕ_{F}

$$\delta_{i \to j} = \sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \nu_i \prod_{\substack{k \in \text{Neighbors}_i \setminus \{j\}}} \delta_{k \to i}$$

 Notice that we have a recursive structure here: message-sum of products of message-sums of products of message-sums of ...

$$\delta_{i \to j} = \sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \nu_i \prod_{k \in \text{Neighbors}_i \setminus \{j\}} \delta_{k \to j}$$

- Notice that you have to work "upward."
- Root will be last.

$$\delta_{i \to j} = \sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \nu_i \prod_{k \in \text{Neighbors}_i \setminus \{j\}} \delta_{k \to i}$$

- Notice that you have to work "upward."
- Root r will be last.

The Algorithm

- Input: clique tree T, factors Φ , root C_r
- For each clique C_i, calculate v_i
- While C_r is still waiting on incoming messages:
 - Choose a C_i that has received all of its incoming messages.
 - Calculate and send the message from C_i to $C_{upstream-neighbor(i)}$
- Return β_r

Obtaining Marginals

- Given a set of query variables Q that is contained in some clique C:
 - Make that clique the root.
 - Run the upward pass of clique tree VE, resulting in factor β.
 - Return $\sum_{\mathbf{c} \setminus \mathbf{Q}} \beta$.
- Later: How to get marginals for Q that are not contained in one clique.

Going Farther

- We can modify this algorithm to give us the marginal probability of *every* random variable in the network.
 - Naively: run clique tree VE with each clique as the root.

Going Farther

- We can modify this algorithm to give us the marginal probability of *every* random variable in the network.
 - Naively: run clique tree VE with each clique as the root.
 - Better: notice that the same messages get used on different runs; only two messages per clique tree edge.

Sum-Product Message Passing

- Each clique tree vertex C_i passes messages to each of its neighbors once it's ready to do so.
 - This is asynchronous;
 might want to be careful about scheduling.
- At the end, for all **C**_i:

$$\beta_i = \nu_i \prod_{k \in \text{Neighbors}_i} \delta_{k \to i}$$

— This is the unnormalized marginal for C_i .

Calibration

• Two adjacent cliques C_i and C_j are calibrated when: $\nabla_{\beta_i} - \nabla_{\beta_i}$

when:
$$\sum_{m{C}_i \setminus m{S}_{i,j}} eta_i = \sum_{m{C}_j \setminus m{S}_{i,j}} eta_j$$

Calibration

• Two adjacent cliques C_i and C_j are calibrated when: $\nabla_{\beta_i} - \nabla_{\beta_i}$

$$\sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \beta_i = \sum_{\boldsymbol{C}_j \setminus \boldsymbol{S}_{i,j}} \beta_j$$

$$= \mu_{i,j}(\boldsymbol{S}_{i,j})$$

Sum-Product Message Passing

- Computes the marginal probability of all variables using only twice the computation of the upward pass.
- Results in a calibrated clique tree.
- Attractive if we expect different kinds of queries.

Calibrated Clique Tree as a Graphical Model

 Original (unnormalized) factor model and calibrated clique tree represent the same (unnormalized) measure:

Calibrated Clique Tree as a Graphical Model

$$\frac{\prod_{\mathbf{C} \in \text{Vertices}(\mathcal{T})} \beta_{\mathbf{C}}}{\prod_{\mathbf{S} \in \text{Edges}(\mathcal{T})} \mu_{\mathbf{S}}} = \frac{\prod_{\mathbf{C} \in \text{Vertices}(\mathcal{T})} \nu_{\mathbf{C}} \prod_{\mathbf{C}' \in \text{Neighbors}(\mathbf{C})} \delta_{\mathbf{C}' \to \mathbf{C}}}{\prod_{\mathbf{S} = \in \text{Edges}(\mathcal{T}): \mathbf{S} = \mathbf{C} \cap \mathbf{C}'} \delta_{\mathbf{C}' \to \mathbf{C}}}$$

$$= \frac{\prod_{\mathbf{C} \in \text{Vertices}(\mathcal{T})} \nu_{\mathbf{C}} \prod_{\mathbf{C}' \in \text{Neighbors}(\mathbf{C})} \delta_{\mathbf{C}' \to \mathbf{C}}}{\prod_{\mathbf{S} = \in \text{Edges}(\mathcal{T}): \mathbf{S} = \mathbf{C} \cap \mathbf{C}'} \sum_{\mathbf{C}' \in \text{Neighbors}(\mathbf{C})} \delta_{\mathbf{C}' \to \mathbf{C}}}$$

$$= \frac{\prod_{\mathbf{C} \in \text{Vertices}(\mathcal{T})} \nu_{\mathbf{C}} \prod_{\mathbf{C}' \in \text{Neighbors}(\mathbf{C})} \delta_{\mathbf{C}' \to \mathbf{C}}}{\prod_{\mathbf{S} = \in \text{Edges}(\mathcal{T}): \mathbf{S} = \mathbf{C} \cap \mathbf{C}'} \sum_{\mathbf{C}' \in \text{Neighbors}(\mathbf{C})} \delta_{\mathbf{C}'' \to \mathbf{C}}}$$

$$= \frac{\sum_{\mathbf{C} \in \text{Vertices}(\mathcal{T})} \nu_{\mathbf{C}} \prod_{\mathbf{C}' \in \text{Neighbors}(\mathbf{C})} \delta_{\mathbf{C}'' \to \mathbf{C}}}{\prod_{\mathbf{S} = \in \text{Edges}(\mathcal{T}): \mathbf{S} = \mathbf{C} \cap \mathbf{C}'} \sum_{\mathbf{C}' \in \text{Neighbors}(\mathbf{C})} \delta_{\mathbf{C}'' \to \mathbf{C}}}$$

Calibrated Clique Tree as a Graphical Model

$$\begin{split} \frac{\prod\limits_{\mathbf{C} \in \mathrm{Vertices}(T)} \beta_{\mathbf{C}}}{\prod\limits_{\mathbf{S} \in \mathrm{Edges}(T)} \mu_{\mathbf{S}}} &= \dots \\ &= \frac{\prod\limits_{\mathbf{C} \in \mathrm{Vertices}(T)} \nu_{\mathbf{C}} \prod\limits_{\mathbf{C}' \in \mathrm{Neighbors}(C)} \delta_{\mathbf{C}' \to \mathbf{C}}}{\prod\limits_{\mathbf{S} = \in \mathrm{Edges}(T): \mathbf{S} = \mathbf{C} \cap \mathbf{C}'} \sum_{\mathbf{C}' \in \mathrm{Neighbors}(C)} \nu_{\mathbf{C}} \prod\limits_{\mathbf{C}' \in \mathrm{Neighbors}(C) \setminus \{\mathbf{C}'\}} \delta_{\mathbf{C}'' \to \mathbf{C}}} \\ &= \frac{\prod\limits_{\mathbf{C} \in \mathrm{Vertices}(T)} \nu_{\mathbf{C}} \prod\limits_{\mathbf{C}' \in \mathrm{Neighbors}(C)} \delta_{\mathbf{C}' \to \mathbf{C}}}{\prod\limits_{\mathbf{S} = \in \mathrm{Edges}(T): \mathbf{S} = \mathbf{C} \cap \mathbf{C}'}} \\ &= \prod\limits_{\mathbf{C} \in \mathrm{Vertices}(T)} \nu_{\mathbf{C}} \\ &= \prod\limits_{\mathbf{C} \in \mathrm{Vertices}(T)} \nu_{\mathbf{C}} \\ &= \prod\limits_{\mathbf{C} \in \mathrm{Vertices}(T)} \phi \\ &= \prod\limits_{\phi \in \mathbf{\Phi}} \phi \end{split}$$

What You Now Know

- Can reinterpret variable elimination as message passing in a clique tree.
- Can share computation to get lots of marginals with only double the cost of VE.
 - Sum-product belief propagation
- Calibrated clique tree is an alternative representation of the original Gibbs distribution.