Graphical Models

Lecture 11:

Cligue Trees

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Inference

e Last two lectures: variable elimination

— Sum out variables one at a time.

* Today: alternative algorithms.

— Also based on factors.
— Central data structure: clique tree.

Formalisms

helpful for
approximate
Lecture 5 app
inference
essentially factor graph
equivalent

-~

moralize skeleton

Bayesian > Markov
Network < Network
triangulate
extra variables per
. factor
pick root, add triangulate
directions one
factor ,
nothing —
per pairwise
clique tree clique Markov

Network

helpful for exact inference

Formalisms

Lecture 5

Markov
Network
triangulate/

Lecture 5

Cligue Tree

Every maximal
cligue becomes a
vertex.

Connect vertices
with overlapping
variables

Tree structure?
then “Clique Tree”
(If graph was
triangulated,
always get a tree
structure.)

Lecture 5

Cligue Tree

“Sep-set” = {A, D}

For each edge,
intersection of r.v.s
separates the rest

in H.

sep,(A, D | B, C)

sep,(B, E | C, D)

sep,(C, F | D, E)

“Cluster Graph”

* A cluster graph for a set of factors @ over X'is an
undirected graph, each of whose nodes i is
associated with a subset C; C X.

* A cluster graph must be “family preserving”: each
factor @ € ® must be associated with a cluster C;

(denoted a(d)), such that Scope[d] C C..

* Each edge between a pair of clusters C;and C;j is
associated with a sepset Si; € Ci n C,.

e “Cluster Tree” a cluster graph that is a tree.

“Running Intersection” Property

e Cluster tree T (with vertices Ci...) has the
running intersection property if,
whenever there is a variable X such as X € C; and
Xe(,
then X is also in every cluster in the (unique)
path in 7 between C; and C;.

ABC BCD CDE |

“Clique Tree” Definition

aka “Junction Tree,” or “Join Tree”

e Given an undirected graph 7,
a tree T is a clique tree for 7 if:

— Each node in 7 corresponds to a clique in JH

— Each maximal clique in HH is a node in T

— Each sepset S, separates the variables strictly on one
side of the edge from the variables on the other side.

Clique Tree = cluster tree that satisfies running intersection property.

How to Obtain a Cligue Tree
Option 1

e Start with factor graph or undirected graph.
* Do . On iteration i:

— Let . be the intermediate factor
— Let T, be the marginalized factor
— Let C. be the set of variables involved in .
» One node per C, edge C-C, when T, gets used in
computing LIJJ..

Example

e Eliminate S.

Dras

b /Gb\ b,

\

O

Example

e Eliminate S.

c Y, = ¢FAS ' CI)SR' CI)SH

¢ FAS

b /Gb\ b,

\

O

Example

e Eliminate S.

c Y, = ¢FAS ' CI)SR' CI)SH

b

b,

b,

All.

Example

e Elim

inate S.

b

b,

b,

All.

Example

e Elim

inate S.

b

b,

All.

Example

 Eliminate R.

b

b,

All.

Example

 Eliminate R.

Example

e Eliminate H.

o LI)3='[2

* 3=, W,

b

/
e

Example

e Eliminate H.

o LI)3='[2

* 3=, W,

B

Example

 Eliminate A.

B

Example b

e Eliminate A. be %

Example

 Eliminate F.

b

Example

 Eliminate F.

Alternative Ordering | ¢

* {H,R, S, A, F} @»%\s
/®\ b,

O-F

>

o
&

How to Obtain a Cligue Tree
Option 1

Start with factor graph or undirected graph.

Do variable elimination.

One node per C, edge C-C; when T, gets used in
computing L|Jj.

Result is always a clique tree!

— Running intersection property.

— Different orderings will give different clique trees.

Reducing a Clique Tree

 Given a clique tree T for a set of factors O,

there is always a reduced clique tree T such
that

. . .) .
— all clique-verticesin T arein T

. .) .
—no clique vertex in T is a subset of another.

* Construction exploits the running intersection
property.

° Reduced Clique Tree

Reduced Clique Tree

Reduced Clique Tree

Reduced Clique Tree

> w N

How to Obtain a Cligue Tree
Option 2

Given factors, construct the undirected graph.
Triangulate to get a chordal graph.
Find maximal cliques in the chordal graph.

Construct a tree from the “cluster graph” of
maximal cliques.

Actually the method we
discussed in Lecture 5

Step 2: Triangulate

 NP-hard in general to get the smallest one.
* Use heuristics.

Step 3: Find Maximal Cliques

 Maximum cardinality search: gives an induced
graph with no fill edges (assuming chordal
graph as input, which we have).

 We proved last time that every maximal clique
in the induced graph equates to the scope of
an intermediate factor from VE.

e Other approaches exist.

Maximum Cardinality Search
for VE Ordering

e Start with undirected graph on X, all nodes
unmarked.

* Fori=|X]| to 1:

— Let Y be the unmarked variable in X with the
largest number of marked neighbors

—1(Y) =i

— Mark Y.

* Eliminate using permutation .

Lecture 10

Example

e First node is arbitrary. u) (an

S.I. |

| RN. |

Example

* First node is arbitrary. oL (an

S.I. |

| RN. |

Example

e 1: A'S
* 0O: R, H

Example

e - A Flu ; All.
e 1: R, H

. RN

Example
e 1: R, H Flu All.

4 S.I.

. RN

Flu

R.N.

S.I.

All.

Example

 Order: {H, R,A,S, F} Flu All.

R.N.

= w N

How to Obtain a Clique Tree
Option 2

Given factors, construct the undirected graph.
Triangulate to get a chordal graph.
Find maximal cliques in the chordal graph.

Construct a tree from the “cluster graph” of
maximal cliques.
— Results from VE with the ordering from maximum

cardinality search; or use maximum spanning tree
(edge weights = sepset sizes).

Example

3

. Order: {H,R A, S, F) 5 Q @
N/
e

Example (Reduce)

3
. Order: {H,R A, S, F) 5 Q Q
.
e

Now You Know ...

* How to construct a clique tree.

e Also called a “junction tree” or a “join tree.”

Running Intersection Property

o

 For connected clique-vertices C. and
C, the sepset S,;isC,n C;, and it
separates the variables on the C side
from those on the C; side.

Running Intersection Property

Lecture 5

For each
edge,
intersection
of r.v.s
separates the

restin H.

sep,(A, D | B, C)

sep,(B, E | C, D)

sep,(C, F | D, E)

Family Preservation

* Every factor in the original graph is associated
with one clique-vertex in the clique tree.

Family Preservation |, b,

Example @ i
w

Inference

e Last two lectures: variable elimination

— Sum out variables one at a time.

* Today: alternative algorithms.

— Also based on factors.
— Central data structure: clique tree.

 What are these algorithms?

Cligue Trees and Variable Elimination

e Each product-factor belongs to a clique-vertex.

 Each tis a “message”
from one clique-vertex to another.

Example

* tH,R,S, A, F}

¢) FAS

Just happens to be that in this graph with this ordering there is a one-to-one correspondence between original
phis and product factors psi, because there was only one factor touching each variable-to-eliminate.

Example b, by

* tH,R, S, A, F} e

¢SR d)SH

Messages

* Notice that the variable elimination ordering
implies a direction to the edges.

 Messages go “upstream.”

* This leads to a clique-tree-centric view of VE, in
which the same calculations happen as in VE.

Example

* tH,R,S, A, F}

¢) FAS

Example b, by

* {H,R,S, A, F} Gbﬂb
e Reduced version
T by

\

O

Example by b,

* {H,R,S, A, F) Gb»fb
* Reduced version @

* |nitial potentials M b,
| \

O

Message Passing in the Clique Tree

* Calculate initial potentials for each clique-

vertex.
vi(C;) =] ¢

PED;
« Choose an arbitrary root clique C. This

imposes a directionality on the graph (think of
the root as a sink). e VE e tat gt pve

created the clique tree.

* Pass messages “upstream”:

5@'—>j — Z V; H 5k—>z

C;\Si, keNeighbors,\ {7}

Example b, by

* {H,R,S, A, F} b Q
¢SH

¢SR
\

®» @

Go through math that gets done for VE here:
Eliminating S.

Factor product of ts, s’ and dras to form Yeas.
Marginalize out S

Message Passing in the Clique Tree

sum out variables that are
not involved in Cj

- iIncoming
original factors
involving the family ME>5a5Es
from other

of C

neighbors of i
\ |
0isj = Z Vi H Ok—i

C\Si,; keNeighbors, \{j}

Message Passing in the Clique Tree

Ci\S;,;

Vi

1]

keNeighbors, \{j}

5k—>7§

Message Passing in the Clique Tree

* Notice that we have a recursive structure here:
message-sum of products of message-sums of
products of message-sums of ...

5@'—>j — Z V; H 5k—>z

C\S;. k€Neighbors, \{j
) 1

Message Passing in the Clique Tree

* Notice that you have to work “upward.”
* Root will be last.

5@'—>j — Z V; H 5k—>z

C\S;. k€Neighbors, \{j
) 1

Message Passing in the Clique Tree

* Notice that you have to work “upward.”

e Root r will be last.

e
bles in Ci e

Unnormalized marginal distribution of root vare woc\“do‘ﬂ @ N\es%%es'\(\‘
/67’ — V'r‘ | | 5k—>’r’
kENeighbors,.
X \ (OF gb cd

— Z'P(CT)

The Algorithm

nput: clique tree T, factors ®, root C

-or each clique C, calculate v,

While C_is still waiting on incoming messages:

— Choose a C that has received all of its incoming
messages.

— Calculate and send the message from C,
to C

upstream-neighbor(i)

Return B,

Obtaining Marginals

* Given a set of query variables Q that is
contained in some clique C:

— Make that clique the root.

— Run the upward pass of clique tree VE,
resulting in factor B.

— Return 3o B.

e Later: How to get marginals for Q that are not
contained in one clique.

Going Farther

 We can modify this algorithm to give us the
marginal probability of every random variable
in the network.

— Naively: run clique tree VE with each clique as the
root.

\ 8SR—)SAF
N\

root

8HS—)SAF

6 Same message as needed
SR>SAF | for previous root!
root 0
€

Osar-shs

root

\ 8SAF‘)SR
N\

8HS—)SAF

—

\ 8SR—>SAF

8SAF—)SR

N

6HS—)SAF

6SAF—)HS

root

Going Farther

 We can modify this algorithm to give us the
marginal probability of every random variable
in the network.

— Naively: run clique tree VE with each clique as the
root.

— Better: notice that the same messages get used on
different runs; only two messages per clique tree
edge.

Sum-Product Message Passing

» Each clique tree vertex C. passes messages to

each of its neighbors once it’s ready to do so.

— This is asynchronous;
might want to be careful about scheduling.

 Atthe end, forall C:

B = vi || ke

k&Neighbors;

— This is the unnormalized marginal for C..

Bsr

—

\ 8SR—>SAF

8SAF%SR

RS

8HS—)SAF

Osar-shs

root

Calibration

» Two adjacent cliques C; and C; are calibrated

when: Z 8 = Z B;

Ci\Si,;j Cji\Si,;

Calibration

» Two adjacent cliques C; and C; are calibrated

when: Z 8 = Z B;

Ci\Si,; Ci\Si,;
= pij(Si;)

Sum-Product Message Passing

 Computes the marginal probability of all
variables using only twice the computation of
the upward pass.

* Results in a calibrated clique tree.

e Attractive if we expect different kinds of
gueries.

Calibrated Clique Tree as a
Graphical Model

* Original (unnormalized) factor model and
calibrated clique tree represent the same
(unnormalized) measure:

1] &6

Hgb _ C eVertices(7)

pcd H KUs

SeEdges(7)

Calibrated Clique Tree as a
Graphical Model

Il e I v Il do-c
C¢cVertices(7T) CcVertices(7T) C’eNeighbors(C)
Hs H Hcne!
SeEdges(7) S=€cEdges(7):S=CnNC’

H Ve H dc'—c

C & Vertices(7T) C’eNeighbors(C)

H Zﬁc

S=€cEdges(7):S=CnNC’ C\S

H %, H dc'—cC

CcVertices(7T) C’eNeighbors(C)

11 2.ve I dere

S=€cEdges(7):S=CNC’ C\S C'’’Neighbors(C)

Calibrated Clique Tree as a
Graphical Model

tle;

CcVertices(7T)

11 #s
ScEdges(7T)
M e II e

C cVertices(7T) C’eNeighbors(C)

H dc'—c Z Ve H dcr—c

S=cEdges(7):S=CNC’ C\S C”¢&Neighbors(C)\{C'}

H vc H dc'—C

C & Vertices(7T) C’€eNeighbors(C)

11 oc'—cdc—c
S=cEdges(7):S=CnC’

_ M v

C¢cVertices(7)

:H¢

pcP

pij = dc,—c,0c;—C;

What You Now Know

e Can reinterpret variable elimination as
message passing in a clique tree.

e Can share computation to get lots of marginals
with only double the cost of VE.

— Sum-product belief propagation

e Calibrated cligue tree is an alternative
representation of the original Gibbs
distribution.

