Graphical Models

Lecture 10:
Variable Elimination, continued

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.
Last Time

• Probabilistic inference is the goal: $P(X \mid E = e)$.
 – #P-complete in general

• Do it anyway! Variable elimination ...
Markov Chain Example

\[P(B) = \sum_{a \in \text{Val}(A)} P(A = a) P(B \mid A = a) \]

\[P(C) = \sum_{b \in \text{Val}(B)} P(B = b) P(C \mid B = b) \]

\[P(D) = \sum_{c \in \text{Val}(C)} P(C = c) P(D \mid C = c) \]
Last Time

• Probabilistic inference is the goal: \(P(X \mid E = e) \).
 – #P-complete in general

• Do it anyway! Variable elimination ...
 – Work on factors (algebra of factors)
 – Generally: “sum-product” inference \(\sum_{Z} \prod_{\phi \in \Phi} \phi \)
Products of Factors

- Given two factors with different scopes, we can calculate a new factor equal to their products.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$\phi_1(A, B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>$\phi_2(B, C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

$\phi_1(A, B) \cdot \phi_2(B, C) = \phi_3(A, B, C)$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$\phi_3(A, B, C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1000</td>
</tr>
</tbody>
</table>
Factor Marginalization

• Given \(\mathbf{X} \) and \(\mathbf{Y} \) (\(\mathbf{Y} \not\in \mathbf{X} \)), we can turn a factor \(\phi(\mathbf{X}, \mathbf{Y}) \) into a factor \(\psi(\mathbf{X}) \) via marginalization:

\[
\psi(\mathbf{X}) = \sum_{y \in \text{Val}(Y)} \phi(\mathbf{X}, y)
\]

| P(C | A, B) | 0, 0 | 0, 1 | 1, 0 | 1,1 |
|---------|------|------|------|-----|
| 0 | 0.5 | 0.4 | 0.2 | 0.1 |
| 1 | 0.5 | 0.6 | 0.8 | 0.9 |

“summing out” B

\[
\begin{array}{|c|c|c|}
\hline
A & C & \psi(A, C) \\
\hline
0 & 0 & 0.9 \\
0 & 1 & 0.3 \\
1 & 0 & 1.1 \\
1 & 1 & 1.7 \\
\hline
\end{array}
\]
Last Time

• Probabilistic inference is the goal: \(P(\mathbf{X} \mid \mathbf{E} = \mathbf{e}) \).
 – \#P-complete in general

• Do it anyway! Variable elimination …
 – Work on factors (algebra of factors)
 – How to eliminate one variable
 (marginalize a product of factors)
Eliminating One Variable

Input: Set of factors Φ, variable Z to eliminate
Output: new set of factors Ψ

1. Let $\Phi' = \{\phi \in \Phi \mid Z \in \text{Scope}(\phi)\}$
2. Let $\Psi = \{\phi \in \Phi \mid Z \not\in \text{Scope}(\phi)\}$
3. Let ψ be $\Sigma_Z \prod_{\phi \in \Phi'} \phi$
4. Return $\Psi \cup \{\psi\}$
Last Time

• Probabilistic inference is the goal: $P(X | E = e)$.
 – #P-complete in general

• Do it anyway! Variable elimination ...
 – Work on factors (algebra of factors)
 – Generally: “sum-product” inference $\sum_{Z} \prod_{\phi \in \Phi} \phi$
 – How to eliminate one variable
 (marginalize a product of factors)
 – How to eliminate a bunch of variables
Variable Elimination

Input: Set of factors Φ, ordered list of variables Z to eliminate

Output: new factor ψ

1. For each $Z_i \in Z$ (in order):

 – Let $\Phi = \text{Eliminate-One}(\Phi, Z_i)$

2. Return $\prod_{\phi \in \Phi} \phi$
Today

- Variable elimination for inference (with evidence)
- Complexity analysis of VE
- Elimination orderings
Probabilistic Inference

• Assume we are given a graphical model.

• Want:

\[
P(X \mid E = e) = \frac{P(X, E = e)}{P(E = e)} \propto P(X, E = e)
\]

\[
= \sum_{y \in \text{Val}(Y)} P(X, E = e, Y = y)
\]
Adding Evidence

• Conditional distributions are Gibbs; can be represented as factor graphs!

• Everything is essentially the same, but we reduce the factors to match the evidence.
 – Previously normalized factors may not be normalized any longer, but this is not a problem.

• Prune anything not on an active trail to query variables.
Example

• Query: $P(\text{Flu} \mid \text{runny nose})$

• Let’s reduce to $R = \text{true (runny nose)}$.

<table>
<thead>
<tr>
<th>$P(R \mid S)$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

• Query: P(Flu | runny nose)

• Let’s reduce to R = true (runny nose).

| P(R | S) | 0 | 1 |
|-------|---|---|
| | | |

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>φ_{SR} (S, R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Example

• Query: $P(\text{Flu} \mid \text{runny nose})$

• Let’s reduce to $R = \text{true (runny nose)}$.

\[
\begin{array}{c|c|c}
\text{S} & \text{R} & \phi_{SR}(S, R) \\
\hline
0 & 0 & \ \\
0 & 1 & \ \\
1 & 0 & \ \\
1 & 1 & \ \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{S} & \text{R} & \phi'_S(S) \\
\hline
0 & 1 & \ \\
1 & 1 & \ \\
\end{array}
\]
Example

• Query: $P(\text{Flu} \mid \text{runny nose})$

• Let’s reduce to $R = \text{true (runny nose)}$.

<table>
<thead>
<tr>
<th>$P(R \mid S)$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>$\phi_{SR} (S, R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>$\phi'_S (S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Example

- Query: $P(\text{Flu} \mid \text{runny nose})$
- Let’s reduce to $R = \text{true (runny nose)}$.

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>$\phi'_s (S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Example

• Query:
 \(P(\text{Flu} \mid \text{runny nose}) \)

• Now run variable elimination all the way down to one factor (for F).

H can be pruned for the same reasons as before.
Example

• Query: $P(\text{Flu} \mid \text{runny nose})$

• Now run variable elimination all the way down to one factor (for F).
Example

• Query:
P(Flu | runny nose)

• Now run variable elimination all the way down to one factor (for F).
Example

• Query: $P(\text{Flu} \mid \text{runny nose})$

• Now run variable elimination all the way down to one factor (for F).

Take final product.
Example

• Query:
 \[P(\text{Flu} \mid \text{runny nose}) \]

• Now run variable elimination all the way down to one factor.
Variable Elimination for Conditional Probabilities

Input: Graphical model, set of query variables Q, evidence $E = e$

Output: factor ϕ and scalar α

1. $\Phi =$ factors in the model
2. Reduce factors in Φ by $E = e$
3. Choose variable ordering on $Z = X \setminus Q \setminus E$
4. $\phi = \text{Variable-Elimination}(\Phi, Z)$
5. $\alpha = \sum_{z \in \text{Val}(Z)} \phi(z)$
6. Return ϕ, α
Note

• For Bayesian networks, the final factor will be $P(Q, E = e)$ and the sum $\alpha = P(E = e)$.

• This equates to a Gibbs distribution with partition function $= \alpha$.
Complexity of
Variable Elimination
Complexity of Variable Elimination

- $n =$ number of random variables
- $m =$ number of factors
- In step i, we multiply all factors relating to X_i, resulting in ψ_i, and sum out X_i, giving a new factor τ_i.
 - $N_i =$ number of entries in ψ_i
 - $N_{\text{max}} = \max_i N_i$
- If we eliminate everything, m initial factors plus n new ones (the τ_i).
Complexity of Variable Elimination

• $m + n$ factors
• Each is multiplied once, then removed.
Recall: Eliminating One Variable

Input: Set of factors \(\Phi \), variable \(Z \) to eliminate
Output: new set of factors \(\Psi \)

1. Let \(\Phi' = \{ \phi \in \Phi \mid Z \in \text{Scope}(\phi) \} \)
2. Let \(\Psi = \{ \phi \in \Phi \mid Z \not\in \text{Scope}(\phi) \} \)
3. Let \(\psi \) be \(\sum_z \prod_{\phi \in \Phi'} \phi \)
4. Return \(\Psi \cup \{ \psi \} \)
Complexity of Variable Elimination

• $m + n$ factors
• Each is multiplied once to produce some ψ_i, then removed to produce τ_i.
 – $(m + n) N_i$ multiplications for X_i
 – $O(mN_{\text{max}})$
• Marginalization (summing) touches each entry in each ψ_i once:
 – N_i additions for X_i
 – $O(nN_{\text{max}})$
Complexity of Variable Elimination

- Overall: $O(mN_{\max})$
 - Bayesian network: $m = n$
 - Markov network: $m \geq n$
Complexity of Variable Elimination

- Overall: $O(mN_{\text{max}})$
- The size N_{max} of the intermediate factors ψ_i is what makes this blow up.
 - v values per random variable
 - k_i variables for factor ψ_i
 - $N_i = v^{k_i}$

- But really, how bad is it?
Analyzing VE via the Graph

• Assume a factor graph representation.

• One step of VE, on X_i:
 – Create a single factor ψ that includes X_i and its neighbors (Y that share factors with X_i).
 – Marginalize X_i out of ψ, giving new factor τ.
 – If we go back to a Markov network, we have now introduced new edges!
Example

- Factor graph.
Example

• Markov network.

Flu
All.
S.I.
R.N.
H.
Example

• Eliminate S.
Example

- Eliminate S.

- $\psi = \phi_{FAS} \cdot \phi_{SR} \cdot \phi_{SH}$
Example

• Eliminate S.

• $\psi = \phi_{FAS} \cdot \phi_{SR} \cdot \phi_{SH}$
Example

- Eliminate S.

- $\psi = \phi_{FAS} \cdot \phi_{SR} \cdot \phi_{SH}$

- $\tau = \sum_S \psi$
Example

• Eliminate S.

• $\psi = \Phi_{FAS} \cdot \Phi_{SR} \cdot \Phi_{SH}$

• $\tau = \sum S \psi$
Example

- Eliminate S.
- $\psi = \phi_{FAS} \cdot \phi_{SR} \cdot \phi_{SH}$
- $\tau = \sum_S \psi$
- Back to Markov net?
Example

removed stuff

“fill edges”
Insight

• Each VE step is a transformation on the graph.
 – We’ve been drawing it on slides this way all along!
• We can put the full sequence of graphs together into a single structure.
Union of the Graphs ...
Union of the Graphs
Induced Graph

• Take the union over all of the undirected graphs from each step: induced graph.

 (1) The scope of every intermediate factor is a clique in this graph.

 (2) Every maximal clique in the graph is the scope of some intermediate factor.

• Important:
 different ordering → different induced graph ...
Proof (1)

• The scope of every intermediate factor is a clique in the induced graph.
 – Consider $\psi(X_1, \ldots, X_k)$, an intermediate factor.
 – In the corresponding Markov network, all of the X_i are connected (they share a factor).
 – Hence they form a clique.
Proof (2)

• Every maximal clique in the induced graph is the scope of some intermediate factor.
 – Consider maximal clique \(Y = \{Y_1, ..., Y_k\} \)
 – Let \(Y_1 \) be the first one eliminated, with resulting product-of-factors \(\psi \).
 – All edges relating to \(Y_1 \) are introduced \textit{before} it is eliminated.
 – \(Y_1 \) and \(Y_i \) share an edge, so they share a factor that gets multiplied into \(\psi \); so \(\psi \) includes all of \(Y \).
 – Any other variable \(X \) can’t be in the scope of \(\psi \), because it would have to be linked to all of \(Y \), so that \(Y \) wouldn’t be a maximal clique.
Ordering: \{S, \ldots\}
Ordering: \(\{H, R, S, A, F\} \)
Ordering: \{H, R, S, A, F\}

induced graph = original graph
“Induced Width”

- Number of nodes in the largest clique of the induced graph, minus one.
 - Relative to an ordering!

```
Flu     All.
|       |
S.I.    |
|       |
R.N.    H.
```

```
Flu     All.
|       |
S.I.    |
|
R.N.    H.
```
“Induced Width”

• Number of nodes in the largest clique of the induced graph, minus one.
 – Relative to an ordering!

• “Tree width” = minimum width over all possible orderings.
 – Bound on the best performance we can hope for …
 VE runtime is *exponential* in treewidth!

Why minus one?
Tree
width
Example

![Diagram of treewidth example]
Treewidth Example
Treewidth Example

[Diagram of a graph with four nodes connected in a square pattern]
Treewidth Example
Treewidth Example
Treewidth Example
Finding Elimination Orderings

• NP-complete:
 “Is there an elimination ordering such that induced width \(\leq K \)?”

• Nonetheless, some convenient cases arise.
You’d like to be able to look at the *original* graph and easily say something about the difficulty of inference
Chordal Graphs

- Undirected graph whose minimal cycles are not longer than 3.
Chordal Graphs

• Induced graphs are always chordal!
Chordal Graphs

- Induced graphs are always chordal!

Lemma: cannot add any edges incident on X_i after it is eliminated.

When we eliminate C, edges A-C and C-D must exist.

After elimination A-D will exist.
Chordal Graphs

- Induced graphs are always chordal!

Lemma: cannot add any edges incident on X_i after it is eliminated.

induced graph? not chordal
Theorem

- Chordal graphs always admit an elimination ordering that doesn’t introduce any fill edges into the graph.
 - No fill edges: no blowup.
 - Inference becomes *linear* in size of the factors already present!
Clique Tree

Every maximal clique becomes a vertex.

Tree structure.

Lecture 5
Clique Tree

For each edge, intersection of r.v.s separates the rest in \mathcal{H}.

sep$_H$(A, D | B, C)

sep$_H$(B, E | C, D)

sep$_H$(C, F | D, E)
Clique Tree

• Does a clique tree exist?
 – Yes, if the undirected graph \mathcal{H} is chordal!
Theorem

• Chordal graphs always admit an elimination ordering that doesn’t introduce any fill edges into the graph.

• Proof by induction on the number of nodes in the tree:
 – Take a leaf C_i in the clique tree.
 – Eliminate a variable in C_i (but not C_i’s neighbor).
 • No fill edges.
 • Still chordal.
Heuristics for Variable Elimination Ordering other than using a clique tree
Alternative Ordering Heuristic: Maximum Cardinality

• Start with undirected graph on X, all nodes unmarked.

• For $i = |X|$ to 1:
 – Let Y be the unmarked variable in X with the largest number of marked neighbors
 – $\pi(Y) = i$
 – Mark Y.

• Eliminate using permutation π.
 – i.e. π maps each variable to an integer;
 eliminate the variables in order of those integers 1, 2, 3...
Alternative Ordering Heuristic: Maximum Cardinality

• “Maximum Cardinality” permutation will not introduce any fill edges for chordal graphs.
• Don’t need the clique tree.
• Can also use it on non-chordal graphs!
 – Better ideas exist, though; greedy algorithms that try to add a small number of edges at a time.
Bayesian Networks Again

• Recall: If undirected graph \mathcal{H} is chordal, then there is a Bayesian network structure G that is a P-map for \mathcal{H}.

• Chordal graphs correspond to Bayesian networks with a **polytree** structure.
 – At most one trail between any pair of nodes.

“polytree” = directed graph with at most one undirected path between any two vertices; equiv: directed acyclic graph (DAG) for which there are no undirected cycles either.
Example Polytree

From Wikipedia :-)
Inference in Polytrees

• Linear in conditional probability table sizes!
 – Consider the skeleton.
 – Pick a root; form a tree.
 – Work in from “leaves.”

• In the corresponding undirected graph, no fill edges are introduced.
Variable Elimination Summary

• In general, exponential requirements in induced width corresponding to the ordering you choose.
• It’s NP-hard to find the best elimination ordering.
• If you can avoid fill edges (or “big” intermediate factors), you can make inference linear in the size of the original factors.
 – Chordal graphs
 – Polytrees