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Conditional Probability Distributions

* Proper CPD:
Y P(X =ux|Parents(X)) = 1

xeVal(X)
N

for continuous case, integral)

* Everything breaks down into distributions over
one variable given some others.



Conditional Probability Distributions

* So far, we've seen table representations.
— How many parameters?
— Where will they come from?

— Alternatives?

* If we know more about the form of a CPD, we
may be able to infer more properties of P.

— Independence assertions

— Efficient inference (later)



Deterministic CPDs

e Sometimes a variable’s value is a deterministic

function of its parents’ values.

allelle from Mom @ @ allelle from Dad
N ¥

G,=aand G,=band G, =G,
G,,E{a, 0} |G, ,E{b,o} |=0

P(T|G,G,) |G =aand
G,;=b
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d
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@ phenotypical blood type



Deterministic CPDs Affect |(G)

e XLY|T
(local Markov assumption)
i e X1LY|{G,G,}

 Can we derive such
independence assertions?



Review: D-Separation

 Three sets of nodes:
X, Y, and observed nodes Z

e Xand Y are d-separated given Z if there is no
active trail fromany X e Xtoany Y €Y given Z.



D-Separation with Deterministic CPDs

Query: X LY |Z?

Deterministic variables: D

Algorithm:

—LetZ' =2

— While there is an X. € D such that
Parents(X,) C Z’, add X. to Z’

— Calculate d-separation between X and Y given 2’

This is sound and complete.

— But if we know still more about the deterministic
functions involved, we may be able to go farther!



Another Example

* Suppose C=AXORB
* |In the case of XOR,
B and C fully determine A

@ - DLE|{BC}



Context-Specific Independence

(A\\ ° SuppOSe C=AO0ORB
- * We are given A=1.

\_ — This implies that C = 1.
) ) « P(X| B, A=1) =P(X | A=1)
— Independence!

 This does not work if A =0.

Previously we defined X L Y | Z to represent the assumption P(X]|Y, Z) = P(X|Z) for all values of X, Y, Z.
Deterministic functions can imply a type of independence that holds only for particular values of some variables.



Context-Specific Independence

Definition

 Let X, Y, and Z be disjoint sets of variables;
Cis a set of variables that could overlap.

* Let c € Val(C).

e Xand Y are conditionally independent given Z
and the context c:

~X1.Y]|Z

—P(X|Y,Z,C=c)=P(X| Z, C=c)
whenever P(Y,Z,C=¢c)>0



Tree CPDs

* Use a tree to represent P(X | Parents(X))
— Each leaf is a distribution over X

— Each path defines a context



Student Example

intelligence difﬁculty of the course

\/

standardized grade

test score /
apply @
letter
V4

job offered

PJ|A,S L |000 001 010 011 100 101 110 111

yes

no




Student Example

intelligence difficulty of the course
grade
standardized test score
apply /
@ letter
4
job offered
PJ|AS,L) 0?? 100 101 110 111

yes

no




Student Example

intelligence difficulty of the course

If your test scores are high
enough, the recruiter

doesn’t even look at the
letter. \ /

grade
standardized test score
apply /
@ letter
4
job offered
PJ|AS,L) 0?? 100 101 11*

yes

no




Student Example

P(J|AS L |[0?? 100 101 11*

yes

no




Other Structured CPDs

Rules

— CPD trees can always be represented compactly as rules,
but the converse does not hold

Decision diagrams

Any kind of partition structure of
Val(X) X Val(Parents(X))

Context-specific CPDs can make some edges
spurious (given the context)!



Independent Causes

e A different kind of CPD structure

 Consider random variable Y and its parents,
Parents(Y) = X

 Two examples
— Noisy OR

— Generalized linear models



Another Professor (Perfect World)

e Letter quality
depends on whether

you participated by @ @

asking good questions \ /
(Q), and on whether

you wrote a good final @
paper (F)

p(|_|Q’ |:) Q=1andF Q0=1andF Q1=OandF Q;OandF

high

low




Another Professor (Real World)

e Letter quality
depends on whether

you participated by @ @

asking good questions \ /
(Q), and on whether

you wrote a good final @
paper (F)

P(L | Q, F) Q=1and |Q=1and |Q=0and [Q=0and
F=1 F=0 F=1 F=0

high

low




Another Professor (Real World)

P(@ | Q) [a=t |a=o
high
(& O

L=Q' VF P(F' | F) |F=1 |F=0

high

low




Another Professor

P(Q | Q) |a=1 |a=0

high

o

noise parameter, A,




Another Professor

P(Q" | Q)

high

low

leak probability, A,

@

0 L=Q" vF v Leak




Noisy OR Model

A. is the noise parameter for X..

PY=0|X) = (1-X) J] a=x)
PY=1|X) = 1—[(1-X) J] =)

OI‘ eqL”ValentIy W”tten (where x! =1 and x°=0)

P°lz1,...,xx) = (1 — Xo) H

1=1




Noisy OR as a
Conditional Bayesian Network

>

O



(What is a Conditional Bayesian Network?)

* Conditional Bayesian Network is a BN with
three types of variables:

— Inputs, always observed, no parents: X
— Qutputs: Y
— Encapsulated: Z

P(Y,Z|X)= || P(W|Parents(W))
weyYuZz

Q
X | { Z Y



Independent Causes

 Many “additive” effects combine to score X
 P(Y=1)is defined as a function of X

sigmoid(score(X))

0.0 0.2 0.4 0.6 0.8 1.0

-10 -5 0 5 10

score(X)
sigmoid(z) =

Q)
I\

+



Generalized Linear Model

e Score is defined as a linear function of X:
Z=f(X) isa f(X) :TU0+ZUJZXZ

random variable!

Z

* Probability distribution over binary value Y is
commonly* defined by:

P(Y =1) = sigmoid(f(X))

Logistic regression e

sigmoid(z) =
Maximum entropy classifier & ( ) 14 e*

* not the only choice aka “logit” function




Logistic CPD Model as a
Conditional Bayesian Network

OIONO

sum

|

sigmoid

Compare: Naive Bayes model



Logistic Models

* Weight wi can be positive or negative.

e The Xand Y do not need to be binary.

— Very useful:
multinomial logistic to allow many values for Y;
indicator variables to allow many values for X

e “Multinomial logit”



CPDs with Causal Independence

Captures Noisy-OR and Generalized linear models

individual noise
models

N

deterministic and symmetrically All interaction among X.
decomposable (binary, commutative, happens here!
associative operation on the Z), then

“Symmetric Independence of Causal Influence” (symmetric ICl)

Noisy OR: GLM:
X = Z; = simple noisy model X = Zi = wiX
Zis > 7Z=0R Zis > Z=sum

Z—> Y =copy Z - Y =sigmajd



Something Interesting Happened!

 We are now representing
conditional probability distributions as
conditional Bayesian Networks!
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Continuous Random Variables

First case: continuous child and parents

e Gaussian distribution is a CPD:
P(Y | Mean =y, Variance = %) = Normal(p, 0?)
* Linear Gaussian CPD: Normal(linear(x), o?)

— Y is a linear function of the variables X, with
Gaussian noise that has variance o?



Example

e XM ijs a vehicle’s position at time t
« V() js jts velocity at time t
X(t+1) ~ X(t) 4 \(t)
* Allow for some randomness in the motion:

(t)\ Gaussian
Ve ) mean

X® k { 7 ) [ x(t1)

/ . ‘ Gaussian

distribution

Linear Gaussian Model

p(Yl|z1,..wx) = N(Bo + Brz1 + ... + Brzg;0°)



Continuous Random Variables

Second case: continuous child with

discrete and continuous parents (X, and X

disc cont)

e “Conditional linear Gaussian”:

o o o E : 2
P(Y ‘ Xdisc = Tdisc; Xcont — wcont) — N (wwdiSC,O + wwdisc,j xcont,ja O-mdisc

— different weights for each x .

* Induces a Gaussian mixture forY



Continuous Random Variables

Third case:
discrete child Y with continuous parent X

e Threshold model

— Makes P(Y | X) discontinuous in X’s value

¢ M U |t| n O m ia I |Oglt (see slide 27 “Generalized Linear Model”)



CPDs can be Bayesian Networks!

* “Conditional Bayesian Network” is a BN with three
types of variables:

— Inputs, always observed, no parents: X
— Qutputs: Y

— Encapsulated: Z

PY,.Z | X) H P(W | Parents(IV))
WeYuZ

bbbbbbbbbbb
||||||||||

e A CPD is an “Encapsulated CPD” if it can be
represented by a Conditional Bayesian Network.

— Construct a complex BN, with components composed of
other BN subcomponents! ...object-oriented style!



Encapsulated CPDs (K&F Figure 5.15)
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Where We Are

e Structure in CPDs
* Effects on independence assertions

 Examples:
— Determinism
— Context-specificity
— Independent causes
— Continuous distributions
— CPDs represented by Conditional BNs



