Graphical Models

Lecture 3:

Local Conditional Probability Distributions

Andrew McCallum mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.

Conditional Probability Distributions

Proper CPD:

$$\sum_{x \in \mathrm{Val}(X)} P(X = x \mid \mathbf{Parents}(X)) = 1$$
(for continuous case, integral)

 Everything breaks down into distributions over one variable given some others.

Conditional Probability Distributions

- So far, we've seen table representations.
 - How many parameters?
 - Where will they come from?
 - Alternatives?
- If we know more about the form of a CPD, we may be able to infer more properties of P.
 - Independence assertions
 - Efficient inference (later)

Deterministic CPDs

 Sometimes a variable's value is a deterministic function of its parents' values.

$P(T \mid G_1, G_2)$	$G_i = a$ and $G_{2-i} = b$	$G_i = a$ and $G_{2-i} \subseteq \{a, o\}$	$G_i = b \text{ and}$ $G_{2-i} \subseteq \{b, o\}$	$G_1 = G_2$ = 0
	21	21	21	
ab	1	0	0	0
а	0	1	0	0
b	0	0	1	0
О	0	0	0	1

Deterministic CPDs Affect I(G)

- X ⊥ Y | T (local Markov assumption)
- $X \perp Y \mid \{G_1, G_2\}$

Can we derive such independence assertions?

Review: D-Separation

- Three sets of nodes:
 - X, Y, and observed nodes Z
- X and Y are d-separated given Z if there is no active trail from any $X \in X$ to any $Y \subseteq Y$ given Z.

D-Separation with Deterministic CPDs

- Query: X ⊥ Y | Z?
- Deterministic variables: D
- Algorithm:
 - Let $\mathbf{Z}' = \mathbf{Z}$
 - While there is an X_i ∈ **D** such that **Parents**(X_i) ⊆ **Z'**, add X_i to **Z'**
 - Calculate d-separation between X and Y given Z'
- This is sound and complete.
 - But if we know still more about the deterministic functions involved, we may be able to go farther!

Another Example

- Suppose C = A XOR B
- In the case of XOR,
 B and C fully determine A
- D ⊥ E | {B, C}

Context-Specific Independence

- Suppose C = A OR B
- We are given A = 1.
 - This implies that C = 1.
- $P(X \mid B, A=1) = P(X \mid A=1)$
 - Independence!
- This does not work if A = 0.

Previously we defined $X \perp Y \mid Z$ to represent the assumption $P(X \mid Y, Z) = P(X \mid Z)$ for all values of X, Y, Z. Deterministic functions can imply a type of independence that holds only for particular values of some variables.

Context-Specific Independence

Definition

- Let X, Y, and Z be disjoint sets of variables;
 C is a set of variables that could overlap.
- Let c ∈ Val(C).
- X and Y are conditionally independent given Z and the context c:
 - $-X \perp_{c} Y \mid Z$
 - P(X | Y, Z, C = c) = P(X | Z, C = c)whenever P(Y, Z, C = c) > 0

Tree CPDs

- Use a tree to represent P(X | Parents(X))
 - Each leaf is a distribution over X
 - Each path defines a context

P(J A, S, L)	000	001	010	011	100	101	110	111
yes								
no								12

P(J A, S, L)	0??	100	101	110	111
yes					
no					13

P(J A, S, L)	0??	100	101	11*
yes				
no				14

P(J A, S, L)	0??	100	101	11*
yes				
no				15

Other Structured CPDs

- Rules
 - CPD trees can always be represented compactly as rules, but the converse does not hold
- Decision diagrams
- Any kind of partition structure of Val(X) × Val(Parents(X))
- Context-specific CPDs can make some edges spurious (given the context)!

Independent Causes

- A different kind of CPD structure
- Consider random variable Y and its parents,
 Parents(Y) = X
- Two examples
 - Noisy OR
 - Generalized linear models

Another Professor (Perfect World)

Letter quality
 depends on whether
 you participated by
 asking good questions
 (Q), and on whether
 you wrote a good final
 paper (F)

P(L Q, F)	Q = 1 and F = 1		Q = 0 and F = 1	Q = 0 and F = 0
high	1	1	1	0
low	0	0	0	18 1

Another Professor (Real World)

Letter quality
 depends on whether
 you participated by
 asking good questions
 (Q), and on whether
 you wrote a good final
 paper (F)

P(L Q, F)	Q = 1 and F = 1	Q = 1 and F = 0	Q = 0 and F = 1	Q = 0 and F = 0
high	0.98	0.8	0.9	0
low	0.02	0.2	0.1	19 1

Another Professor (Real World)

L = Q	' ∨ F'
-------	--------

P(F' F)	F = 1	F = 0	
high	0.9	0	
low	0.1	1	

Another Professor

Another Professor

Noisy OR Model

 λ_i is the noise parameter for X_i .

$$P(Y = 0 \mid \mathbf{X}) = (1 - \lambda_0) \prod_{i:X_i = 1} (1 - \lambda_i)$$

$$P(Y = 1 \mid X) = 1 - \left[(1 - \lambda_0) \prod_{i:X_i=1} (1 - \lambda_i) \right]$$

Or equivalently written (where x¹ = 1 and x⁰ = 0)

$$P(y^{0}|x_{1},...,x_{k}) = (1 - \lambda_{0}) \prod_{i=1}^{k} (1 - \lambda_{i})^{x_{i}}$$

Noisy OR as a Conditional Bayesian Network

24

(What is a Conditional Bayesian Network?)

- Conditional Bayesian Network is a BN with three types of variables:
 - Inputs, always observed, no parents: X
 - Outputs: Y
 - Encapsulated: Z

$$P(\boldsymbol{Y}, \boldsymbol{Z} \mid \boldsymbol{X}) = \prod_{W \in \boldsymbol{Y} \cup \boldsymbol{Z}} P(W \mid \mathbf{Parents}(W))$$

Independent Causes

- Many "additive" effects combine to score X
- P(Y = 1) is defined as a function of X

Generalized Linear Model

Score is defined as a linear function of X:

Z = f(X) is a random variable!

$$f(\boldsymbol{X}) = w_0 + \sum_i w_i X_i$$

 Probability distribution over binary value Y is commonly* defined by:

$$P(Y = 1) = \operatorname{sigmoid}(f(X))$$

Logistic regression Maximum entropy classifier

$$\operatorname{sigmoid}(z) = \frac{e^z}{1 + e^z}$$
aka "logit" function

Logistic CPD Model as a Conditional Bayesian Network

Compare: Naïve Bayes model

Logistic Models

- Weight w_i can be positive or <u>negative</u>.
- The X and Y do not need to be binary.
 - Very useful: multinomial logistic to allow many values for Y; indicator variables to allow many values for X
- "Multinomial logit"

CPDs with Causal Independence

Captures Noisy-OR and Generalized linear models

Ζ

deterministic and symmetrically decomposable (binary, commutative, associative operation on the Z_i), then

"Symmetric Independence of Causal Influence" (symmetric ICI)

Noisy OR:

$$X \rightarrow Z_i$$
 = simple noisy model

$$Z_i s \rightarrow Z = OR$$

$$Z \rightarrow Y = copy$$

All interaction among X_i happens here!

 X_n

GLM:

$$X \rightarrow Z_i = w_i X_i$$

$$Z_i s \rightarrow Z = sum$$

$$Z \rightarrow Y = sigmoid$$

Something Interesting Happened!

 We are now representing conditional probability distributions as conditional Bayesian Networks!

P(Y X)	000	001	010	011	100	101	110	111
1								
0								33

Continuous Random Variables

First case: continuous child and parents

- Gaussian distribution is a CPD:
 P(Y | Mean = μ, Variance = σ²) = Normal(μ, σ²)
- Linear Gaussian CPD: Normal(linear(\mathbf{x}), σ^2)
 - Y is a linear function of the variables X, with Gaussian noise that has variance σ^2

Example

- X^(t) is a vehicle's position at time t
- V^(t) is its velocity at time t

$$X^{(t+1)} \approx X^{(t)} + V^{(t)}$$

Allow for some randomness in the motion:

Linear Gaussian Model

$$p(Y|x_1,...x_k) = \mathcal{N}(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k; \sigma^2)$$

Continuous Random Variables

Second case: continuous child with discrete and continuous parents (X_{disc})

"Conditional linear Gaussian":

$$P(Y \mid \boldsymbol{X}_{\text{disc}} = \boldsymbol{x}_{\text{disc}}, \boldsymbol{X}_{\text{cont}} = \boldsymbol{x}_{\text{cont}}) = \mathcal{N}\left(w_{\boldsymbol{x}_{\text{disc}}, 0} + \sum_{j} w_{\boldsymbol{x}_{\text{disc}, j}} x_{\text{cont}, j}, \sigma_{\boldsymbol{x}_{\text{disc}}}^{2}\right)$$

- different weights for each \mathbf{x}_{disc}
- Induces a Gaussian mixture for Y

Continuous Random Variables

Third case:

discrete child Y with continuous parent X

- Threshold model
 - Makes P(Y | X) discontinuous in X's value
- Multinomial logit (see slide 27 "Generalized Linear Model")

CPDs can be Bayesian Networks!

- "Conditional Bayesian Network" is a BN with three types of variables:
 - Inputs, always observed, no parents: X
 - Outputs: Y
 - Encapsulated: Z

$$P(oldsymbol{Y}, oldsymbol{Z} \mid oldsymbol{X}) = \prod_{W \in oldsymbol{Y} \cup oldsymbol{Z}} P(W \mid \mathbf{Parents}(W))$$

- A CPD is an "Encapsulated CPD" if it can be represented by a Conditional Bayesian Network.
 - Construct a complex BN, with components composed of other BN subcomponents! ...object-oriented style!

Encapsulated CPDs (K&F Figure 5.15)

Where We Are

- Structure in CPDs
- Effects on independence assertions
- Examples:
 - Determinism
 - Context-specificity
 - Independent causes
 - Continuous distributions
 - CPDs represented by Conditional BNs