Graphical Models

Lecture 2:
Bayesian Network Representation

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.



Administrivia

* This course “likely” but not “certain”
to be an Al core.
Won’t know for sure until February 2nd.

* Mailing list 691gm-staff@cs.umass.edu now exists.
Later 691gm-all@cs will work also.

* Who has visited the web site?
http://www.cs.umass.edu/~mccallum/courses/gm2011



Goals for Today

Define Bayesian Networks

Naive Bayes

Relation between BNs and independence
V-structure, active trail, D-separation, Bayes ball
I-Map, Minimal I-Map, P-Map.

HW#1 out.



The Bayesian Network
Independence Assumption

* Local Markov Assumption: A variable X is
independent of its non-descendants given its
parents (and only its parents).

X 1 NonDescendants(X) | Parents(X)

* P “factorizes over graph G” defined by Parents()



Recipe for a Bayesian Network

e Set of random variables X
Directed acyclic graph (each X is a vertex)

* Conditional probability tables, P(X | Parents(X))

e Joint distribution: N
P(X)=]] P(X; | Parents(X;))

1=1

* Local Markov Assumption

— A variable X is independent of its non-descendants
given its parents (and only its parents).

X 1 NonDescendants(X) | Parents(X)

Draw! Talk about “generative storyline”



Where do Independencies Come From?

* Derive complete set from true P.

— Generally impossible.
* Brazen convenience.
* |ntuition about causality.

e Careful search

— Structure Learning (later in the semester)



Naive Bayes

Common, simple independence assumption



Naive Bayes Model

e Class variable C
 Evidence variables X=X, X,, ..., X

N

o Assumption: (X; LX; | C) VX CX, X, CX

j#i

P(C, X) = P(C) ﬁP(Xi | C)

1=1



Naive Bayes Model



Where do Independencies Come From?

Derive complete set from true P.

— Generally impossible.
Brazen convenience.
Intuition about causality.

Careful search

— Structure Learning (later in the semester)
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Causal Structure

The flu causes sinus
inflammation

Allergies also cause
sinus inflammation

Sinus inflammation
Causes a runny nose

Sinus inflammation
causes headaches



Causal Structure

The flu causes sinus
inflammation

Allergies also cause
sinus inflammation

Sinus inflammation
Causes a runny nose

Sinus inflammation
causes headaches

Flu |

. R.N. |

S.I. |

Al



Factored Joint Distribution

P(F, A, S, R, H) o [ ) e |
= P(F) ~

P(A) ina (o)

P(S | F, A)

P(R | S) PRIS) [’ ) PHIS)
P(H | S)




A Bigger Example: Starting Car

* 18 variables
©
Alternator FQelt LQ BerAge P The Car doesn’t Sta rt.

Charge BQWS“‘W The radio WorkS-
ckorover _tran * What do we conclude

about the “gas in tank”?



Causality and Independence

“A causes B” implies
“A and B dependent”

“A and B dependent” does not imply
“A causes B”

e.g. smoking, cancer, yellow-fingers



Querying the Model

 Marginal Inference
P(F) or P(F|H=t) iy o

* MAP* Inference
argmax fa P(F=f, A=a|H=t)

S.I.

* Active data collection
In solving one of the two
above problems, which
variable to query next.

* “Maximum Aposteriori,” also sometimes called “MPE Inference” (Most Probable Explanation)



Queries and Reasoning Patterns

e Causal Reasoning or

Prediction - Al
(downstream)

 Evidential Reasoning B
(upstream)

* Inter-causal Reasoning
(sideways between parents)
“explaining away”

Nothing magical. Underneath everything comes from joint P table.



Reading Independencies from the Graph

We used some independencies when building the BN.
Once built the BN expresses some independencies itself. How do we read these from the graph?

« NLF[S @ @
N/

(follows from BN def’n)

/N
© ©

Can we judge independence by
the existence of paths with no
“blocking” observed variables?



The BN Independence Assumption

again

* Local Markov Assumption: A variable X is
independent of its non-descendants given its
parents (and only its parents).

X 1L NonDescendants(X) | Parents(X)



Reading Independencies from the Graph

We used some independencies when building the BN.
Once built the BN expresses some independencies itself. How do we read these from the graph?

*RLF|@?

e Answer

— Can we imagine a case in
which independence
does nOt hOId? Can we judge independence by
(reason by conve rse) the existence of paths with no

“blocking” observed variables?



A Puzzle

* FLA|S? P(F)@ P(A) @

N "4

P(S|F A) ‘

P(R|S) @ P(H[S) @



A Puzzle

F = false,
A =false

F =true,
A = false

P(S|F, A)

S = true

S = false




A PUZZIQ true 0.2

false 0.8
true 0.2
cFLA|S? false [0l P(F) @ P(A) @
N 4

P(S | F, A) F = true, F = true, F = false, F = false,
A = true A = false A = true A =false
P(S|F A)
S =true

S = false

/N




A Puzzle true |00

false
true
° FJ-A | S? false 0 P(F) @ P(A) @

P(SlF A) F = true, F = true, F = false, F = false,

! A = true A = false A =true A = false

P(S|F A)

S =true
S = false / \

 P(F=true)=0.2 PRI @ S @

* P(F=true | S=true)=
* P(F=true | S=true, A=true)=




A Puzzle

* FLA|S? P(F)@ P(A) @
h" 4

P(S | F, A) ‘
* |n general, no.
— This independence / \

statement does not P(R|S) P(H | S)
follow from the Local
Markov assumption.

e ~(FLA|S)

Discuss Pearl’s “Alarm” network
“Explaining away”



Reading Dependencies from the Graph

We used some independencies when building the BN.
Once built the BN expresses some independencies itself. How do we read these from the graph?

* Direct Connection

Foo A
F->S, -FLS
* |ndirect Causal Effect ~
F>S->H, -FLH $ S
* Indirect Evidential Effect 8? |
HESEF -HLF § i .
S
e Common Cause Y

N&ES—>H, -NLH

e Common Effect
F>S & A Sobserved -FLA|S




Reading Independencies from the Graph
~FLS FLS

Direct Connection @_,@

X-=2>Y

Indirect Causal Effect O—>O—()  (O—@—)

X2>7Z-2Y

Indirect Evidential Effect (\)«{(2)«() (—=@«v)

X&EZ&<Y
Common Cause @A@ @A@
X&Z->Y
Common Effect "k%
X->Z&Y L Ty
explaining away (Shey or an observed descendant!




“Active trail” ~ dependent

Active Trail

Let G be a BN structure and X1 & ... & X, a trail in G.

Let Z be a subset of observed variables.

The trail is “active” given Z if

e whenever we have a v-structure Xi1 = Xi 2 Xi+1,
then X; or one of its descendants are in Z;

* no other node along the trail is in Z.



“Separated” ~ independent

D-Separation

“Directed Separation”

Let X, Y, Z be three sets of nodes in G. We say that X

and Y are “d-separated” given Z,

d-seps(X;Y | Z),
if there is no “active trail” between any node X € X
andY €Y given Z.



D-Separation Algorithm

 Question: Are X and Y d-separated given Z7?
— (How many possible trails?)

1. Traverse the graph bottom up, marking any
node that is in Z or with a descendent in Z.

2. Breadth-first search from X, only along active
trails; finds reachable set R.

— Extra bookkeeping required to keep track of each
node being reached via children vs. via parents!

3. XandY are d-separated iff Y € R.



Bayes Ball Algorithm et ses sracen

Another expression of “active trails” and d-separation.

X Y Z X Y Z
Behavior going le,'k__,g O_,Q_,Q

from X to Z on path

through Y.
Y Y X yA X V4
VAR AN
A =7 N\ /Y
X Z X V4 Y Y
X Y X Y
Behavior at O—0) O—@
end points.
X Y X Y

Diagrams from M. Jordan



D-Separation and Dependencies

Theorem 3.4, (K&F p73):

Let G be a BN structure. If X and Y are not d-separated
given Zin G, then X and Y are dependent given Z in
some distribution P that factorizes over G.

We use /(G) to denote the set of independencies
that correspond to d-separation:
I(G)={(XLY|Z):d-seps(X;Y | 2Z)}

I(G) = the set of independencies guaranteed in all Pg



What’s Independent?

F J_ A @ P(F) Flu P(A) All.
ALF| O .
P(S | F A) >l
S?
RL{FA H}|S
PR|S) [ RN. | P(H|S)

HL{FAR}|S



New Edge: What’s Independent?

F J_ A @ P(F) Flu P(A) All.
ALF| o | _
P(S | F/A) >
S?
RL{EAH}|S,F s
PR|S,F) [ RN. | P(H|S) H.

HL{FAR}|S



New Edge: What’s Independent?

F J_ A @ P(F) Flu P(A) All.
ALF| o | _
P(S | F/A) >
S?
RL{EA H}Y|S,F s
PR|S,F) [ RN. | P(H|S) H.

H L {F A, R}|S
L A|H?




Questions

1. Given a BN,
what distributions can be represented?

2. Given a distribution,
what BNs can represent it?

3. In addition to the Local Markov Assumption,
what other independence assumptions are
encoded in a given BN?



Reality vs. Model

 World: true distribution P
— true independencies
— true factored form (beyond chain rule)

 Model: Bayesian network

— a graph encoding local independence
assumptions

* Any connections?



Representation Theorem

The conditional independencies T
in our BN are a subset of the <j>
independencies in P.

* Given a graph G,
can find I(G).

* Given a distribution P,
can ﬁnd I(P) (in theory anyway)

e |-Map: I(G) c I(P)
* |-Equivalence: I(G;1) = I(G>)




l-Equivalence

 Two graphs G1 and G; are I-Equivalent if
(G1) = (G2)

e Define “Skeleton”: undirected version of G.

* Theorem 3.7. If G; and G, have the same
skeleton and the same set of v-structures, then
they are |-equivalent.



Minimal and Perfect I-Maps

* Gis a Minimal I-Map for | if
— Gis an |I-Map for I, and

— the removal of any single edge would make it no
longer an I-Map.

* Gis aP-Map (Perfect Map) for | if
—1(G) =1

* |s there a directed graphical model
P-Map for every I?
— No!



Homework

e Describe and discuss.




