Today’s Main Points

• Discuss Quiz
• Summary of course feedback
• Tips for HW#4

• Part-of-speech tagging
 – What is it? Why useful?
• Return to recipe for NLP problems
• Hidden Markov Models
 – Definition
 – Generative Model
 – Next time: Dynamic programming with Viterbi algorithm
Class surveys very helpful

• Learning something?
 – I am learning tons!
 – Yes. Quizzes helpful.
 – Yes. Dynamic programming for trees was awesome.
 – Yes! ...will be very useful in my career.
 – Learning what I hoped: Ling & CS ties,...
 – Yes... linguistics... Also Python is quite rewarding.
Class Surveys

• Pace and Lectures
 – The pace seems exactly right to me.
 – I like the lectures the way they are.
 – Please go just a bit slower, with more examples.
 – The pace is too fast.
 – Pace is a bit too slow.
 – Love the in-class exercises and group discussions.
 – Prefer lectures to class interaction
 – Love your lecture style! One of the most enjoyable ...
Class Surveys

• Homeworks
 – I enjoy having control over the homeworks
 – HWs are interesting. Open-endedness is great!
 – Fun because we get to play around; lots of freedom!
 – ...helped me apply the material learned in class.
 – ...good length
 – ...encourage us to be creative
 – Very inspiring!

– Would like more time between assignment and due date
– Unfair. Got requested assignment working perfectly but got 15/20, and comment asking for more experimentation.
Class Surveys

• **Workload**
 – (No one complaining.)
 – “Work is fun, so it feels like less.”
Class Surveys

• Suggestions & Concerns
 – Show us examples of others’ homeworks
 – Less rushed. More examples (applications, Python)
 – Group exercise only for the project, not for HWs
 – Nervous about upcoming midterm. Don’t know what to expect.
 • Practice midterm, grades posted
HW #4 Tasks

• Naive Bayes
 – document classification (SPAM dataset provided)
 – part-of-speech tagger

• N-gram Language model
 – Train and generate language
 • look for phase changes?
 • experiment with different smoothing methods?
 – Foreign language classifier
 – Rank output of a machine translation system
HW#4 Help
Evaluation

Result of running classifier on a test set:

| filename | trueclass | predclass | p(predclass | doc) |
|----------|-----------|-----------|-------------|
| ... | ... | ... | ... |

<table>
<thead>
<tr>
<th></th>
<th>true spam</th>
<th>true ham</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred spam</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>pred ham</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

Accuracy = (TP+TN) / (TP+TN+FP+FN)
Precision = TP / (TP+FP)
Recall = TP / (TP+FN)
F1 = harmonic mean of Precision & Recall
HW#4 Help

Precision-Recall Curve

Typically if \(p(\text{spam}) > 0.5 \), then label as spam, but can change 0.5 “threshold”

Each threshold yields a new precision/recall pair. Plot them:
• Getting back to \(p(c|d) \)
 - Subtract a constant to make all non-positive
 - \(\exp() \)
Part of Speech Tagging and Hidden Markov Models
Grammatical categories: parts-of-speech

- Nouns: people, animals, concepts, things
- Verbs: expresses action in the sentence
- Adjectives: describe properties of nouns

The \{ sad, intelligent, green, fat, ... \} one is in the corner.

“Substitution test”
The Part-of-speech Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

• Uses:
 – text-to-speech (how do we pronounce “lead”?)
 – can differentiate word senses that involve part of speech differences (what is the meaning of “interest”)
 – can write regexps like Det Adj* N* over the output (for filtering collocations)
 – can be used as simpler “backoff” context in various Markov models when too little is known about a particular history based on words instead.
 – preprocessing to speed up parser (but a little dangerous)
 – tagged text helps linguists find interesting syntactic constructions in texts (“ssh” used as a verb)
Tagged Data Sets

- **Brown Corpus**
 - Designed to be a representative sample from 1961
 - news, poetry, …
 - 87 different tags

- **Claws5 “C5”**
 - 62 different tags

- **Penn Treebank**
 - 45 different tags
 - Most widely used currently
Part-of-speech tags, examples

<table>
<thead>
<tr>
<th>PART-OF-SPEECH</th>
<th>TAG</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjective</td>
<td>JJ</td>
<td>happy, bad</td>
</tr>
<tr>
<td>Adjective, comparative</td>
<td>JJR</td>
<td>happier, worse</td>
</tr>
<tr>
<td>Adjective, cardinal number</td>
<td>CD</td>
<td>3, fifteen</td>
</tr>
<tr>
<td>Adverb</td>
<td>RB</td>
<td>often, particularly</td>
</tr>
<tr>
<td>Conjunction, coordination</td>
<td>CC</td>
<td>and, or</td>
</tr>
<tr>
<td>Conjunction, subordinating</td>
<td>IN</td>
<td>although, when</td>
</tr>
<tr>
<td>Determiner</td>
<td>DT</td>
<td>this, each, other, the, a, some</td>
</tr>
<tr>
<td>Determiner, postdeterminer</td>
<td>JJ</td>
<td>many, same</td>
</tr>
<tr>
<td>Noun</td>
<td>NN</td>
<td>aircraft, data</td>
</tr>
<tr>
<td>Noun, plural</td>
<td>NNS</td>
<td>women, books</td>
</tr>
<tr>
<td>Noun, proper, singular</td>
<td>NNP</td>
<td>London, Michael</td>
</tr>
<tr>
<td>Noun, proper, plural</td>
<td>NNPS</td>
<td>Australians, Methodists</td>
</tr>
<tr>
<td>Pronoun, personal</td>
<td>PRP</td>
<td>you, we, she, it</td>
</tr>
<tr>
<td>Pronoun, question</td>
<td>WP</td>
<td>who, whoever</td>
</tr>
<tr>
<td>Verb, base present form</td>
<td>VBP</td>
<td>take, live</td>
</tr>
</tbody>
</table>
Closed, Open

• Closed Set tags
 – Determiners
 – Prepositions
 – …

• Open Set tags
 – Noun
 – Verb
Why is this such a big part of NLP?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

• The first statistical NLP task
• Been done to death by different methods
• Easy to evaluate (how many tags are correct?)
• Canonical finite-state task
 – Can be done well with methods that look at local context
 – (Though should “really” do it by parsing!)
Fed raises interest rates 0.5% in effort to control inflation

NY Times headline 17 May 2000
Fed raises interest rates 0.5% in effort to control inflation
Degree of Supervision

- **Supervised**: Training corpus is tagged by humans
- **Unsupervised**: Training corpus isn’t tagged
- **Partly supervised**: E.g. Training corpus isn’t tagged, but you have a dictionary giving possible tags for each word

- We’ll start with the supervised case (in later classes we may move to lower levels of supervision).
Current Performance

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

• Using state-of-the-art automated method, how many tags are correct?
 – About 97% currently
 – But baseline is already 90%
 • Baseline is performance of simplest possible method:
 • Tag every word with its most frequent tag
 • Tag unknown words as nouns
Recipe for solving an NLP task

Input: the lead paint is unsafe

Output: the/Det lead/N paint/N is/V unsafe/Adj

1) **Data**: Notation, representation
2) **Problem**: Write down the problem in notation
3) **Model**: Make some assumptions, define a parametric model (often generative model of the data)
4) **Inference**: How to search through possible answers to find the best one
5) **Learning**: How to estimate parameters
6) **Implementation**: Engineering considerations for an efficient implementation
Work out several alternatives on the board...
(Hidden) Markov model tagger

• View sequence of tags as a Markov chain.
 Assumptions:
 – Limited horizon \(P(x_{t+1}|x_1, \ldots, x_t) = P(x_{t+1}|x_t) \)
 – Time invariant (stationary) \(P(x_{t+1}|x_t) = P(x_2|x_1) \)
 – We assume that a word’s tag only depends on the previous tag (limited horizon) and that his dependency does not change over time (time invariance)
 – A state (part of speech) generates a word. We assume it depends only on the state.
 \[P(o_t|x_1, \ldots, x_T, o_1, \ldots, o_{t-1}) = P(o_t|x_t) \]
The Markov Property

• A stochastic process has the **Markov property** if the conditional probability distribution of future states of the process, given the present state, depends only upon the current state, and conditionally independent of the past states (the *path* of the process) given the present state.

• A process with the Markov property is usually called a **Markov process**, and may be described as *Markovian*.

\[
\Pr[X(t+h) = y \mid X(s) = x(s), s \leq t] = \Pr[X(t+h) = y \mid X(t) = x(t)], \quad \forall h > 0.
\]
HMM as Finite State Machine

transitions

\[P(x_{t+1}|x_t) \]

emissions

\[P(o_t|x_t) \]

for above in...

...
HMM as Bayesian Network

- Top row is unobserved states, interpreted as POS tags
- Bottom row is observed output observations (words)
Applications of HMMs

- NLP
 - Part-of-speech tagging
 - Word segmentation
 - Information extraction
 - Optical Character Recognition (OCR)

- Speech recognition
 - Modeling acoustics

- Computer Vision
 - Gesture recognition

- Biology
 - Gene finding
 - Protein structure prediction

- Economics, Climatology, Communications, Robotics...
Probabilistic Inference in an HMM

Three fundamental questions for an HMM:

1) Compute the probability of a given observation sequence, when tag sequence is hidden (language modeling)

2) Given an observation sequence, find the most likely hidden state sequence (tagging) DO THIS NEXT

3) Given observation sequence(s) and a set of states, find the parameters that would make the observations most likely (parameter estimation)
(One) Standard HMM formalism

- \((X, O, x_s, A, B)\) are all variables. Model \(\mu = (A, B)\)
- \(X\) is state sequence of length \(T\); \(O\) is observation seq.
- \(x_s\) is a designated start state (with no incoming transitions). (Can also be separated into \(\pi\) as in book.)
- \(A\) is matrix of transition probabilities (each row is a conditional probability table (CPT))
- \(B\) is matrix of output probabilities (vertical CPTs)

\[
P(X, O | \mu) = \prod_{t=1}^{T} a[x_t | x_{t-1}] b[o_t | x_t]
\]

- HMM is a probabilistic (nondeterministic) finite state automaton, with probabilistic outputs (from vertices, not arcs, in the simple case)
Most likely hidden state sequence

• Given O = (o₁,…,oₜ) and model µ = (A,B)
• We want to find

\[\arg \max_X P(X|O, \mu) = \arg \max_X \frac{P(X, O|\mu)}{P(O|\mu)} = \arg \max_X P(X, O|\mu) \]

• \(P(O,X| \mu) = P(O|X, \mu) P(X| \mu)\)
• \(P(O|X, \mu) = b[x₁|o₁] b[x₂|o₂] \ldots b[xₜ|oₜ]\)
• \(P(X| \mu) = a[x₁|x₂] a[x₂|x₃] \ldots a[xₜ₋₁|xₜ]\)
• \(\arg \max_X P(O,X| \mu) = \arg \max x₁, x₂,\ldots xₜ\)
• Problem: \(\arg \max \) is exponential in sequence length!
Representation for Paths: Trellis

States

X1

x2

x3

x4

Time 1 2 3 4 ... T
Representation for Paths: Trellis

States

<table>
<thead>
<tr>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
</tr>
<tr>
<td>x2</td>
</tr>
<tr>
<td>x3</td>
</tr>
<tr>
<td>x4</td>
</tr>
</tbody>
</table>

Time

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>
representation for Paths: Trellis

δ_i(t) = Probability of most likely path that ends at state \(i \) at time \(t \).
Finding Probability of Most Likely Path using Dynamic Programming

- Efficient computation of max over all states
- Intuition: Probability of the first t observations is the same for all possible $t+1$ length sequences.
- Define forward score:
 \[
 \delta_i(t) = \max_{x_1 \ldots x_{t-1}} P(o_1 o_2 \ldots o_t, x_1 \ldots x_{t-1}, x_t = i | \mu)
 \]
 \[
 \delta_j(t + 1) = \max_{i=1 \ldots N} \delta_i(t) a[x_j | x_i] b[o_{t+1} | x_j]
 \]
- Compute it recursively from the beginning
- (Then must remember best paths to get arg max.)
Finding the Most Likely State Path with the Viterbi Algorithm
[Viterbi 1967]

• Used to efficiently find the state sequence that gives the highest probability to the observed outputs
• Maintains two dynamic programming tables:
 – The probability of the best path (max)
 $$\delta_j(t+1) = \max_{i=1..N} \delta_i(t)a[x_j|x_i] b[o_{t+1}|x_j]$$
 – The state transitions of the best path (arg)
 $$\psi_j(t+1) = \arg \max_{i=1..N} \delta_i(t)a[x_j|x_i] b[o_{t+1}|x_j]$$

• Note that this is different from finding the most likely tag for each time t!
Viterbi Recipe

• Initialization
\[\delta_j(0) = 1 \text{ if } x_j = x_s. \quad \delta_j(0) = 0 \text{ otherwise.} \]

• Induction
\[\delta_j(t + 1) = \max_{i=1..N} \delta_i(t) a[x_j|x_i] b[o_{t+1}|x_j] \]

Store backtrace
\[\psi_j(t + 1) = \arg \max_{i=1..N} \delta_i(t) a[x_j|x_i] b[o_{t+1}|x_j] \]

• Termination and path readout
\[\hat{x}_T = \arg \max_{i=1..N} \delta_i(T) \]
\[\hat{x}_t = \psi \hat{x}_{t+1}(t + 1) \]

Probability of entire best seq.
\[P(\hat{X}) = \max_{i=1..N} \delta_i(T) \]