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1.0 Introduction
Problem: In this work we consider the problem of sparse, block-
structured Gaussian precision matrix (inverse covariance matrix) 
estimation when the blocks are not known a priori. 

Motivation: Estimating a covariance matrix from high dimensional data 
using a small number of samples is known to be statistically 
challenging, and yet it is a problem that arises frequently in practice. 
For some kinds of data, it is reasonable to assume that the variables 
can be clustered or grouped into types that share similar connectivity or 
correlation patterns. For example, genes can be grouped into 
pathways, and connections within a pathway might be more likely than 
connections between pathways. 

Our interest is in devising methods that simultaneously infer the block 
structure and a block-sparse precision matrix to provide improved 
regularization when there is no known block structure. 

2.0 Related Work
Tikhonov Regularization: A very simple approach, which we shall call 
Tikhonov regularization, is to increase the diagonal of the empirical 
covariance matrix by adding a scalar multiple of the identity matrix.

Independent L1 Regularized Precision Estimation: Sparse precision 
matrix estimation can be cast as a convex optimization problem in the 
penalized maximum likelihood framework. An L1 penalty is imposed on 
the elements of the precision matrix [Yuan07, Banerjee06].

Group L1 Regularized Precision Estimation: If the group structure is
known, one can extend the L1 penalized likelihood framework in a 
straightforward way, by penalizing the infinity norm [Duchi08] or the 
two-norm [Schmidt09] of each block separately. The resulting objective 
function is still convex, and encourages block-wise sparse graphs.

Sparse Dependency Networks: An alternative approach to sparse 
precision estimation is to learn the underlying graph by regressing each 
node on all the others using an L1 penalty [Meinshausen06, Marlin09]. 

3.0 Distributions
Summary: We convert the independent L1 and group L12 regulariza-
tion functions into probability distributions over positive definite matri-
ces. We embed the distributions in hierarchical models to simultane-
ously estimate the group structure and a corresponding group-sparse 
precision matrix. 

4.0 Bounds 5.0 Covariance Estimation
 

Group Sparsity Property: We illustrate the group sparsity effect in 4D 
by computing a Monte Carlo estimate of E[|X|] under the group L1 
distribution with λ0=1.0 and λ1=0.1 for each unique partition. We see 
that between-group entries are suppressed as expected. 

Model: We use our new distributions as sparsity-inducing priors on the 
precision matrix in a hierarchical model. The top of the hierarchy 
consists of a conjugate Multinomial/Dirichlet clustering model to 
estimate the groups.
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Independent L1 Distribution: Corresponds to the independent L1 reg-
ularization function. MAP estimation under this prior is equivalent to pe-
nalized maximum likelihood estimation under L1 regularization when 
the penalty parameters are known and fixed.

Group L1 Distribution: We augment the independent L1 distribution 
with a group indicator variable z for each dimension. We apply differen-
tial penalization that depends on the group structure giving a "soft" 
group sparsity effect.

Group L12 Distribution: MAP estimation under this prior is equivalent 
to penalized maximum likelihood estimation under L12 regularization 
when the penalty parameters and the grouping are known and fixed. 

Summary: The intractable normalizing terms in both distributions de-
pend on the grouping. We adopt a strategy of upper-bounding the in-
tractable normalization terms, which yields a tractable lower bound on 
the log posterior. We construct the upper bound by expanding the do-
main of integration from the positive definite cone to the larger space of 
symmetric matrices with positive diagonal.

Group L1 Bound: Reduces to univariate exponential and Laplace inte-
grals, which have simple closed form solutions.

Group L12 Bound: Reduces to univariate exponential/Laplace and 
multivariate Laplace integrals, which all have closed form solutions.

Bounds in 2D: We can evaluate the true normalization constant exact-
ly in 2D. We compare to the bound and a Monte Carlo approximation.

Bounds in Higher Dimension: In higher dimensions we compare the 
bound to the Monte Carlo approximation. We show the error as a func-
tion of penalization strength for all partitions in 4D. We also show the 
bound versus the Monte Carlo estimate as a function of dimension.

Learning: We optimize a lower bound on the log posterior based on the 
precision distribution bound and a Variational Bayes approximation 
q(z,θ|α,φ). We make non-local moves in partition space using explicit 
cluster splitting steps based on greedy or exhaustive search methods.  

Experimental Results: We test the proposed methods on two data 
sets. The N=100 D=60 CMU motion capture data set used by Marlin 
and Murphy, and the N=86, D=59 Mutual Funds (MF) data set used by 
Scott and Carvalho. We show test performance and inferred groups.
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• T:                   Tikhonov regularization
• IL1:                Independent L1 penalized likelihood
• GL1-u(g/e):   Group L1 prior (unknown groups, greedy/exhaustive search)
• GL12-u(g/e): Group L12 prior (unknown groups, greedy/exhaustive search)
• GL12-k:         Group L12 penalized likelihood (known groups)


