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Introduction Variational Bounds Results

Models and Methods:

Motivation: Gaussian latent factor models, such as factor analysis (FA) and Tractable Lower bound to the Marginal Likelihood: Computation of the

Such models are easy to fit since marginal likelihood is available in closed form, W=1,p=1 W=5pu=1

probabilistic principal components analysis (PPCA), are very commonly used marginal likelihood is intractable as the multinomial likelihood is not conjugate Bohni||1_g Bound: Jaakkola Bound: FA-VM FA model with the Bohning bound.
density models for continuous-valued data. They have many applications includ- to the Gaussian prior. We use variational bounds to compute a tractable lower > Lessaccurate. > More accurate. FA-VJM FA model with the Jaakkola bound for binary data.
ing latent factor discovery, dimensionality reduction, and missing data imputation. bound. > Faster. » Slower. Mix-FA Mixture of FA model with the Bohning bound
In this work,TV\rl]e con5|der|generallzed F,lA modfells fpr mlxhed co”ntlnL;ous and .d|.s| o(yP|0) = / o(y2n )p(2,)dz, ixed curvature » Variable curvature. FA-MM FA model with the Maximize-maximize approach (Collins et. al. 2002).
greetgn(jjaetr?c.;ies l:?;?/v;ne%dg ;[aa\r;rie;l;lrggnv?/ii/hurf]iexgd ?lnceest ey allow for non-trivia Z, A,=1/4 Ay =2\ FA-SS FA model with the Sample-sample approach (Mohamed et. al. 2008).
P ypes. — / exp [n,fyﬁ—lse("?n)} N (z,]0,1)dz, by =Ap—(1+e ") by = —3 Mix-Full/Diag Mixture model with a full or diagonal covariance matrix.
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Problem: Unlike standard FA and PPCA, Gaussian latent factor models for dis- D 1T T Cp =AU —(1+ &)y Gy = — M — 5% " I1og(1 &) Svnthetic Data E : . MSE - hetic Bi d th N
crete data have an intractable integral in the marginal likelihood that makes learn- z me/ SxP [nnynfinnAwn bymn — C@é} N (2|0, 1)az; +log(1 + e") Ao =[(1+e) " =31/ (2¥) ynthetic Data Experiment: MSE vs time on synihetic Binary data with IV =
. e Z N 600, D = 16, L = 10 and 10% missing data.
INng difficult. for all v € RrM
Solution: We propose to solve the intractable integral through the application The Bohning Bound: We use a quadratic bound due to Bohning. This bound  lllustration of bounds: Variational bounds tolog(1 + €7). The Bohning bound Accuracy vs Speed — . Sqalability
of a simple variational quadratic bound to the log-sum-exp function. The bound can be derived using a Taylor series expansion around % € R", has a fixed curvature and is tight at one point, while the Jaakkola bound has a 0.15f —o—FAVM || = ErA-VV |
applies to both categorical and binary data. The resulting learning algorithm has Ise(n) = Ise(w) + (n — ) g(x) + 3(n — v) "H(x)(n — ) variable curvature and s tight at two points. —— FA-VJM _5 | mrFA-vIM
J ; i oL ... .................................
advantages over other approaches to learning such models. where g(-) and H(-) are the gradient and Hessian of Ise(-), and x € RV is Bohning Bound Jaakkola Bound CLH § - FA._SS %
chosen such that the equality holds. An upper bound to Ise(n) is found by 407 y- - - - - - < 0.1} |\ Rl S SR = top e
replacing the Hessian matrix H(x) with a fixed matrix A such that A — H(x) is ' | | D qfh
Facto r An al s I s M ode I S positive definite for all x. Bohning gives one such matrix A, which we define 307 | | sl W
y below:. 0.05— i : £ | | |
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Gaussian Likelihood: Standard factor analysis models assume a Gaussian se(n) < zn An - #’7 T Cy Time (s) Data Dimension (D)
prior on the latent factor vector and a Gaussian likelihood on the observed data. A = 3lly— 1yl y/(M+1)] 10-
The mean of the Gaussian on the observed data is modeled as a linear projection b, = Ay — S(v)
of the continuous latent factor. Cp = %¢TA¢ — S(¢) T + Ise(y) 0 Real Data Experiment: We compute imputation MSE and entropy on three
where 1 € RM is the variational parameter vector, 1y, is the identity matrix of 20 0 20 40 20 0 20 40 datasets. We choose number of latent factors and number of mixture compo-
. . N N nents using cross-validation.
n(z,) = N(O, 1) size M x M and 1, is a vector of ones of length M.
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@—> D D D Posterior Inference and Lower Bound to the Marginal Likelihood: Inference Example: Top row shows the likelihood for a binary observation Z - - 2 -
_ : : Catrilng . - O o - ool B B ...
n . 1 Dig) v % 1Ty TA b7 P y = 1 along with lower bounds and the prior distribution. Bottom row show the 2 - 2 /. D
N p(ynl0) > m$x| n|2 exp [zmn n Mp—Cyp+ p Appe + By p+ p yn} true and approximate posterior distributions. g 0-3-66 g 097 o ol | |
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m, = V,W'(y? + b, — Ap) e | ———— E s S i S s i 238
0)= | N(y, Wz, Z)N(z,0.1) = N(y,WW' + 5 = = E- Lo = L= 29
PLYI6) ,/z (YnlWzp, 2)N(20/0. 1) Yo ) where g(z) = N(m,, V,) is the approximate posterior distribution. The maxi- 2 e = z E z £
Discrete Likelihood: Standard factor analysis can be generalized to any expo- mum with respect to 1) satisfies the following equation: ) = Wm, + p. 0 | At as 392 ob . {n . 45 d bles with
nential family likelihood by modeling the natural parameters as a linear projection - _ _ _ S 05 - Ut? fat2a1set a5 0ve O :Cejr\l/agons 0 X COT’;;SSS %n |.scretefv:1r|a e Wit
of a Gaussian-distributed continuous latent factor vector. In the case of discrete Parameter Estimation with EM algorithm: [o get closed-form updates in the IS totg 50 g categorllesl. ur: ate}seft 27a S %9,ee8 O s:;\?go dns © ﬁ ont;rgug:Jg
data, the mean parameters of the multinomial (Bernoulli) distribution are obtained M step, we further lower bound the marginal likelihood using Jensen's inequal- 2 ag screte fvjzng es wit t.Oth of = hcateglgo??zé ataset has 16,
through a softmax (logistic) transformation applied to the linear projection of the ity with the Gaussian variational posterior q(z,) IS observations o iscrete variables with total o categories.
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latent factor vector. p(Yn|0) = maxliq [nnyn — 2N Aumn + by, — Cw} +EqN (2|0, 1) + H(q) -4 0 4 Continuous FA vs Mixed-Data FA: Latent factors for Auto data. Top row shows
‘ factors using only continuous variables. Bottom row shows factors obtained by
p(zn|0) = N(z,|0,1,) Sm(n) = exp[nm — Ise(n)] | including discrete variables.
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Complexity: O(L2DNI) per iteration | Complexity: O(L3DNI) per iteration %
Latent Factor Space Multinomial Distribution Multinomial Mean Parameter Space o
= N AN
0.7 Initialize W and . Initialize W and . % 5 .. 5 .
repeat repeat = s s
V:<WTAW+|L)1 forn=1,...,Ndo
forn=1,...,Ndo '”'“‘i‘"ze V. ’ ’
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fori—1..... Ido V, = (WTA¢W 4 |L> Error in Estimating the Marginal Likelihood: The Bohning bound (blue) and Factor ] Factor ]
m, = VW' (y7 + b, —Ap) mp = VnWT(V,L;) + by — Ayp) the Jaakkola bound (red). I\/(I)iz(ed—Data FA: Number of Cylinders N Mixed-Data FA: Country
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until convergence until convergence o0 Japan
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