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Introduction: Introduction: Introduction: Introduction: Covariance Estimation

• Estimating the covariance matrix Σ of a Gaussian 
distribution is known to be difficult when the number of data 
cases N is low relative to the number of data dimensions D. 

D=1 D=2 D=3
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Introduction: Introduction: Introduction: Introduction: Covariance Selection

• In 1972, Dempster proposed clamping some of the 
elements of the precision matrix Ω = Σ-1  to zero as a way of 
controlling complexity and deriving better covariance 
estimates.

• Zeros in the precision matrix correspond to absent edges in 
the Gaussian Graphical Model (GGM). Favoring sparse 
precision matrices corresponds to favoring sparse GGMs.
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Introduction: Introduction: Introduction: Introduction: Group Sparsity

• For some kinds of data, the variables can be clustered or 
grouped into types that share similar connectivity or 
correlation patterns. 

• If we can infer these groups, we can use them to regularize 
precision matrix estimation in the N≈D and N<D regimes.



Sparse Gaussian Graphical Models with Unknown Block Structure

Benjamin M. Marlin and Kevin P. Murphy 

Department of Computer Science, University of British Columbia 6

Introduction: Introduction: Introduction: Introduction: Problem Statement

• The problem we address in this work is how to estimate 
sparse, block-structured Gaussian precision matrices when 
the blocks are not known a priori. 
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Related Work: Related Work: Related Work: Related Work: Graphical Lasso

• The Graphical Lasso is a technique for sparse precision 
estimation based on independently penalizing the L1 norm 
of each precision matrix entry [Banerjee et al, Yuan & Lin]. 

• S: Empirical covariance matrix.
• νννν : Diagonal regularization parameter.
• λλλλ : Off-diagonal regularization parameter.
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Related Work: Related Work: Related Work: Related Work: Group Graphical Lasso

• The graphical lasso has been extended to group sparsity by 
penalizing the norm of each block of the precision matrix given 
a known grouping of the variables [Duchi et al, Schmidt et al]. 

• Gk : Set of variables in group k.
• λλλλkl : Penalty parameter for entries between groups k and l.
• pkl : Norm on entries between groups k and l.
• Schmidt et al. use pkl = 1 within groups and pkl = 2 between.

l

k
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Related Work: Related Work: Related Work: Related Work: Sparse Dependency Nets

• In a sparse dependency net we penalize the L1 norm of 
the linear regression weights for each node j regressed on 
every other node i≠j [Meinshausen and Buhlmann]. We can 
extract a graph and fit GGM using IPF/gradient-based 
optimization. 

• wji : Linear regression weight for node j given node i.
• xnj : Value of data dimension j for data case n. 
• xn-j : Value of all data dimensions but j for data case n.
• λλλλ : Penalty parameter.
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Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Overview
A Two-Stage Approach to Precision Estimation:

1. Use a hierarchical dependency network-based model 
to infer a grouping of the variables.

2. Fix the grouping and estimate the precision matrix 
using the Group L1/L2 method of Schmidt et al. 

• Using group graphical lasso to estimate the precision matrix 
gives us block sparsity when it is well supported by the data, 
and block shrinkage in general.   
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Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Model
• Stochastic Block Model
• Dependency Network
• Spike and Slab style 
prior
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Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Model
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Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Inference
Variational Bayes Approximation: We use a fully 
factorized variational Bayes approximation for learning.
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Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Inference
Variational Bayes Learning Algorithm:
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Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Unknown Block Structure: Inference
Extensions to Basic Variational Inference:

• The variational updates for the cluster indicators are tightly 
coupled together. To help get around this problem we 
introduce explicit cluster splitting steps based on graph 
cuts.

• For large problems, the dependency network weight 
updates are very costly at O(d4) per iteration. We use a 
fast adaptive variational update schedule to help with this 
problem.
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Experiments: Experiments: Experiments: Experiments: Methods

• T: Tikhonov Regularization

• IL1: Independent L1 penalized maximum likelihood (aka 
graphical lasso) 

• KGL1: Group L1/L2 penalized maximum likelihood with 
known groups.

• UGL1: Group L1/L2 penalized maximum likelihood with 
groups inferred by our hierarchical dependency network.

• UGL1F: Group L1/L2 penalized maximum likelihood with 
groups inferred by our hierarchical dependency network. 
Uses fast update schedule.
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Experiments: Experiments: Experiments: Experiments: Empirical Protocol

• We used fixed hyper-parameters for the hierarchical 
dependency network to infer the groups for UGL1 and 
UGL1F.

• We report five-fold cross validation test log likelihood 
estimates (relative to the Tikhonov baseline) as a function 
of the regularization parameter λ.

• We present results on two data sets.
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Results: Results: Results: Results: CMU Data Set
CMU Motion Capture Data Set (N={25,50,75,100}, D=60):



Sparse Gaussian Graphical Models with Unknown Block Structure

Benjamin M. Marlin and Kevin P. Murphy 

Department of Computer Science, University of British Columbia 22

Results: Results: Results: Results: CMU Test Log Likelihood 
N=25

Known groups
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Results: Results: Results: Results: CMU Test Log Likelihood N=50
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Results: Results: Results: Results: CMU Test Log Likelihood 
N=75

Known groups
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Results: Results: Results: Results: CMU Test Log Likelihood N=100

Known groups
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Results: Results: Results: Results: CMU Inferred Structures N=50
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Results: Results: Results: Results: CMU Estimated Precision Matrix
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Results: Results: Results: Results: Gasch Genes Data Set
Gasch Genes Data Set (N=174,D=667):
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Results: Results: Results: Results: Genes Test Set Log Likelihood



Sparse Gaussian Graphical Models with Unknown Block Structure

Benjamin M. Marlin and Kevin P. Murphy 

Department of Computer Science, University of British Columbia 30

Results: Results: Results: Results: Genes Inferred Structures
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Results: Results: Results: Results: Genes Estimated Precision
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Conclusions and Future WorkConclusions and Future WorkConclusions and Future WorkConclusions and Future Work

• We have demonstrated a method for estimating sparse 
block-structured precision matrices when the blocks are not 
known a priori. 

• The method is based on using variational inference in a 
hierarchical dependency network model to estimate the 
blocks, combined with convex optimization to estimate the 
precision matrix given the blocks.

• In work appearing at UAI’09, we present an alternative 
approach based on converting the graphical lasso and 
group L1/L2 penalty functions into distributions on positive 
definite matrices.
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The End


