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1.0 Introduction

2.0 Graph Classes & Priors
Gaussian Distribution: We parametrize the Gaussian distribution 
directly in terms of the precision matrix Ω as shown below. Without loss 
of generality we assume the data has zero mean. S denotes the 
sample covariance matrix XTX. Note that <Ω,S>=trace(Ω,S).

Decomposable Graphs: Most prior 
work on learning the structure of 
GGMs has focused on the special 
case of decomposable graphs. De-
composable GGMs have the special 
property that the marginal likelihood 
under the conjugate Hyper-Inverse-
Wishart (HIW) prior is fast to  com-
pute following local changes to the 
graph. However, only a small fraction 
of the total number of graphs on D no-
des is decomposable.

Non-Decomposable Graphs: Non-Decomposable GGMs are more 
general than Decomposable GGMs. However, the marginal likelihood 
under the conjugate G-Wishart prior (given below) is intractable, mak-
ing the search for general GGM  structures computationally expensive.   

6.0 Experiments

Selected References

Overview: We perform experiments aimed at assessing the density es-
timation and structural recovery performance of GGM structure learning 
methods including decomposable and general SLS started from the 
most likely tree structure (DLS-T and GLS-T), Neighborhood Fusion us-
ing L0 and L1 priors (NF-L0 and NF-L1), and hybrid L0 Neighborhood 
Fusion/general SLS (GLS-NF).

Data Sets: We use the D=59/N=60 mutual funds data set (previously 
considered by Scott and Carvalho) to assess density estimation 
performance and visualize MAP structures. We use D=100/N=500 and 
D=100/N=50 synthetic data sets to assess structural recovery.

Mutual Funds Density Estimation and Visualization: We see that 
the hybrid GLS-NF method is significantly better than the other 
methods in terms of diagonal Laplace Score, test set log-likelihood, and 
imputation log-likelihood. The visualizations show that the GLS-T and 
GLS-NF methods include more edges than the DLS and  NF methods.

Synthetic Data Structural Recovery: On these higher dimensional 
data sets, we see that DLS-T and GLS-T perform quite poorly. NF-L0 
and GLS-NF again have significantly better performance.
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Gaussian Graphical Models: A Gaussian graphical model is simply a 
multivariate Gaussian distribution where the precision matrix (the 
inverse of the covariance matrix) is sparse. Zeros in the precision 
matrix correspond to absent edges in the graphical model. Absent 
edges in the graphical model imply conditional independence relations. 

Problem: This work addresses the problem of accelerating the search 
for non-decomposable Gaussian Graphical Model structures. 

Motivation: Estimating Gaussian Graphical Model structure can be 
motivated from two different perspectives:

 (1) Regularization. Sparse GGM structures are sought as a means 
of controlling  model complexity, and improving  density estimation.

 (2) Knowledge Discovery. The true graphical structure is sought for 
the purpose of  interpreting the relationships between variables.

3.0 Graph Scoring

4.0 Graph Search

Overview: Approximating the marginal likelihood for non-decomposa-
ble GGMs is one of the main contributions of this work. We compare 
several approximations including a Monte Carlo method, two forms of 
Laplace approximation, and the Bayesian Information Criterion (BIC). 

Monte Carlo Approximation: Approximates the numerator and 
denominator of Equation 3 using sampling (Atay-Kayis and Massam, 
2005). The sampling distribution is exact and consists of products of  
normals and chi-squareds (code available from Mike West's group).

Laplace Approximation: Approximates the numerator and denomina-
tor of Equation 3 using a ratio of Laplace approximations. Requires 
computing the mode and the determinant of the Hessian matrix (evalu-
ated at the mode) for both the prior and posterior G-Wishart distribu-
tions (Lenkoski and Dobra, 2008).  

Diagonal Laplace Approximation: Our proposed method. Identical to 
the full Laplace approximation except that we approximate the determi-
nant of the full Hessian matrix by the product of the diagonal entries. 

BIC Approximation: Approximates Equation 3 using the log likelihood 
evaluated at the mode of the posterior plus an edge penalty term.

Computing G-Wishart Modes: We use a convex optimization method 
to compute G-Wishart prior and posterior modes. The method is similar 
to the G-Lasso approach of Duchi et al. (2008).  

Overview: A stochastic local search algorithm tries to identify the most 
likely graph structure G in a given class of graphs by iterating between 
three steps (Scott and Carvalho, 2008): a stochastic local update to the 
graph based on marginal edge probabilities, scoring the graph, and 
updating the marginal edge probabilities. We show SLS trace plots 
below for decomposable graphs started from the optimal tree (DLS-T), 
general graphs started from the optimal tree (GLS-T), and general 
graphs started from Neighborhood Fusion (GLS-NF, see Section 5.0).
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5.0 Neighborhood Fusion
Overview: Neighborhood fusion solves the problem of quickly produc-
ing large sets of high quality GGM structures. It exploits sparse linear 
regression techniques to compute a set of candidate neighborhood 
structures for each variable Xd, and specifies a mechanism for sam-
pling and combining these neighborhoods to form undirected graphs. It 
is related to both the work of Meinshausen and Buhlmann (2006), and 
the G-Lasso (Friedman et al., 2007). We describe the algorithm below.

Step 1: Compute the Regularization Path & Store Neighborhoods
We compute the regularization path for each linear regression problem 
Xd = WX-d under a sparse prior (L0 or L1). We extract the distinct 
neighborhoods of Xd by examining the non-zero linear regression 
coefficients at each setting of the regularization parameter. We store 
the nth distinct neighborhood of Xd in Ndn.
 

 

Step 2: Score Neighborhoods & Compute Proposal Distribution. 
Next, we compute a score Sdn for each neighborhood Ndn of Xd ex-
pressing how well that neighborhood explains Xd. We use the linear regres-
sion Bayesian Information Criterion score. We compute a multinomial distri-
bution Qd over the local neighborhoods extracted for each variable Xd by 
exponentiating and normalizing the scores: Qdn / exp(Sdn).

Step 3: Sample Neighborhoods and Combine. Finally, we sample 
one local neighborhood for each variable Xd and intersect them to form a 
single symmetric graph. The graph sampling step can be repeated any 
number of times to quickly produce a large set of varied graphs.

Combining NF and SLS: We can use a  sample of NF graphs to accelerate 
SLS in two different ways. (1) We can initialize the SLS marginal edge 
probabilities from the NF sample. (2) We can start the SLS search from the 
best graph found by NF.
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