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Learning, inference, and prediction in the presence of missing data are pervasive problems in

machine learning and statistical data analysis. This thesis focuses on the problems of collab-

orative prediction with non-random missing data and classification with missing features. We

begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We

place a particular emphasis on the missing at random assumption in the multivariate setting

with arbitrary patterns of missing data. We derive inference and prediction methods in the

presence of random missing data for a variety of probabilistic models including finite mixture

models, Dirichlet process mixture models, and factor analysis.

Based on this foundation, we develop several novel models and inference procedures for both

the collaborative prediction problem and the problem of classification with missing features.

We develop models and methods for collaborative prediction with non-random missing data by

combining standard models for complete data with models of the missing data process. Using

a novel recommender system data set and experimental protocol, we show that each proposed

method achieves a substantial increase in rating prediction performance compared to models

that assume missing ratings are missing at random.

We describe several strategies for classification with missing features including the use of

generative classifiers, and the combination of standard discriminative classifiers with single im-

putation, multiple imputation, classification in subspaces, and an approach based on modifying

the classifier input representation to include response indicators. Results on real and synthetic

data sets show that in some cases performance gains over baseline methods can be achieved by

methods that do not learn a detailed model of the feature space.
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Chapter 1

Introduction

Missing data occur in a wide array of application domains for a variety of reasons. A sensor in

a remote sensor network may be damaged and cease to transmit data. Certain regions of a gene

microarray may fail to yield measurements of the underlying gene expressions due to scratches,

finger prints, dust, or manufacturing defects. Participants in a clinical study may drop out

during the course of the study leading to missing observations at subsequent time points. A

doctor may not order all applicable tests while diagnosing a patient. Users of a recommender

system rate an extremely small fraction of the available books, movies, or songs, leading to

massive amounts of missing data.

Abstractly, we may consider a random process underlying the generation of incomplete data

sets. This generative process can be decomposed into a complete data process that generates

complete data sets, and a missing data process that determines which elements of the complete

data set will be missing. In the examples given above, the hypothetical complete data set would

include measurements from every sensor in a remote sensor network, the result of every medical

test relevant to a particular medical condition for every patient, and the rating of every user

for every item in a recommender system. The missing data process is sometimes referred to

as the missing data mechanism, the observation process, or the selection process. We might

imagine that a remote sensor is less likely to transmit data if its operational temperate range

is exceeded, that a doctor is less likely to order a test that is invasive, and that a user of a

recommender system is less likely to rate a given item if the user does not like that item.

The analysis of missing data processes leads to a theory of missing data in terms of its

impact on learning, inference, and prediction. This theory draws a distinction between two

fundamental categories of missing data: data that is missing at random and data that is not

missing at random. When data is missing at random, the missing data process can be ignored

and inference can be based on the observed data only. The resulting computations are tractable

in many common generative models. When data is not missing at random, ignoring the missing

1
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data process leads to a systematic bias in standard algorithms for unsupervised learning, in-

ference, and prediction. An intuitive example of a process that violates the missing at random

assumption is one where the probability of observing the value of a particular feature depends

on the value of that feature. All forms of missing data are problematic in the classification

setting since standard discriminative classifiers do not include a model of the feature space. As

a result, most discriminative classifiers have no natural ability to deal with missing data.

1.1 Outline and Contributions

The focus of this thesis is the development of models and algorithms for learning, inference, and

prediction in the presence of missing data. The two main problems we study are collaborative

prediction with non-random missing data, and classification with missing features. We begin

Chapter 2 with a discussion of decision theory as a framework for understanding different learn-

ing and inference paradigms including Bayesian inference, maximum a posteriori estimation,

maximum likelihood estimation, and regularized function approximation. We review particu-

lar algorithms and principles including the Metropolis-Hastings algorithm, the Gibbs sampler,

and the Expectation Maximization algorithm. We also discuss procedures for estimating the

performance of prediction methods.

Chapter 3 introduces the theory of missing data due to Little and Rubin. We present

formal definitions of the three main classes of missing data. We present a detailed investigation

of the missing at random assumption in the multivariate case with arbitrary patterns of missing

data. We argue that the missing at random assumption is best understood in terms of a set

of symmetries imposed on the missing data process. We review the impact of random and

non-random missing data on probabilistic inference. We present a study of the effect of data

model misspecification on inference in the presence of random missing data. We demonstrate

that using an incorrect data model can lead to biased inference and learning even when data is

missing at random in the underlying generative process.

Chapter 4 introduces unsupervised learning models in the random missing data setting in-

cluding finite multinomial mixtures, Dirichlet Process multinomial mixtures, factor analysis,

and probabilistic principal component analysis. We present maximum a posteriori learning in

finite mixture models with missing data. We derive conjugate and collapsed Gibbs samplers for

the Dirichlet Process multinomial mixture model with missing data. We derive complete expec-

tation maximization algorithms for factor analysis, probabilistic principal components analysis,

mixtures of factor analyzers, and mixtures of probabilistic principal components analyzers with

missing data.

Chapter 5 focuses on the problem of unsupervised learning for collaborative prediction when
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missing data may violate the missing at random assumption. Collaborative prediction problems

like rating prediction in recommender systems are typically solved using unsupervised learning

methods. As discussed in Chapter 3, the results of learning and prediction will be biased if the

missing at random assumption is violated. We discuss compelling new evidence in the form

of a novel user study and the analysis of a new collaborative filtering data set which strongly

suggests that the missing at random assumption does not hold in the recommender system

domain.

We present four novel models for unsupervised learning with non-random missing data that

build on the models and inference procedures for random missing data presented in Chapter

4. These models include the combination of the finite multinomial mixture model and the

Dirichlet Process multinomial mixture model with a simple missing data mechanism where

the probability that a rating is missing depends only on the value of that rating. We refer

to this mechanism as CPT-v since it is parameterized using a simple conditional probability

table. We prove that the parameters of the CPT-v missing data mechanism are conditionally

identifiable even though the mixture data models are not identifiable. We also combine the

finite multinomial mixture model with a more flexible missing data model that we refer to as

Logit-vd. The Logit-vd model allows for response probabilities that differ depending on both

the underlying rating value, and the identity of the item. The name Logit-vd derives from the

fact that the missing data mechanism is represented using an additive logistic model. We review

modified contrastive divergence learning for restricted Boltzmann machines with missing data,

and offer a new derivation of these learning methods as standard contrastive divergence in an

alternative model. The final model we consider is a conditional Restricted Boltzmann Machine

that includes energy terms that can account for non-random missing data effects similar to the

CPT-v model.

We show that traditional experimental protocols and testing procedures for collaborative

prediction implicity assume missing ratings are missing at random. We show that these pro-

cedures fail to detect the effects of non-random missing ratings. To correct this problem we

introduce novel experimental protocols and testing procedures specifically designed for col-

laborative prediction with non-random missing data. Our empirical results show that rating

prediction methods based on models that incorporate an explicit non-random missing data

mechanism achieve 25% to 40% lower error rates than methods that assume the missing at

random assumption holds. To put these results in perspective, the best models studied in our

previous work on collaborative filtering achieve approximately 15% lower error rates relative

to the simplest models we considered [52, p. 107-108]. We also compare the methods studied

in terms of ranking performance, and again show that methods that model the missing data

mechanism achieve better ranking performance than methods that treat missing data as if it is
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missing at random.

In Chapter 6 we consider the problem of classification with missing features. We begin

with a discussion of general strategies for dealing with missing data in the classification setting.

We consider the application of generative classifiers where missing data can be analytically

integrated out of the model. We derive a variation of Fisher’s linear discriminant analysis for

missing data that uses a factor analysis model for the covariance matrix. We then derive a

novel discriminative learning procedure for the classifier based on maximizing the conditional

probability of the labels given the observed data.

We study the application of logistic regression, multi-layer neural networks, and kernel

classifiers in conjunction with several frameworks for converting a discriminative classifier into

a classifier for incomplete data cases. We consider the use of various imputation methods

including multiple imputation. For data sets with a limited number of patterns of missing

data, we consider a reduced model approach that learns a separate classifier for each pattern

of missing data. Finally, we consider an approach based on modifying the input representation

of a discriminative classifier in such a way that the classification function depends only on the

observed feature values, and which features are observed. Results on real and synthetic data

sets show that in some cases performance gains over baseline methods can be achieved without

learning detailed models of the input space.

1.2 Notation

We use capital letters to denote random variables, and lowercase letters to denote instantiations

of random variables. We use a bold typeface to indicate vector and matrix quantities, and a

plain typeface to indicate scalar quantities.

When describing data sets we denote the total number of feature dimensions by D, and the

total number of data cases by N . We denote the feature vector for data case n by xn, and

individual feature values by xdn. In the classification setting we denote the total number of

classes by C. We denote the class variable for data case n by yn, and assume it takes the values

{1,−1} in the binary case, and {1, ..., C} in the multi-class case.

We use square bracket notation [s] to represent an indicator function that takes the value 1

if the statement s is true, and 0 if the statement s is false. For example, [xdn = v] would take

the value 1 if xdn is equal to v, and 0 otherwise.

1.2.1 Notation for Missing Data

Following the standard representation for missing data due to Little and Rubin [49], we intro-

duce a companion vector of response indicators for data case n denoted rn. rdn is 1 if xdn is
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observed, and rdn is 0 if xdn is not observed. We denote the number of observed data dimensions

in data case n by Dn. In addition to the response indicator vector, we introduce a vector on

of length Dn listing the dimensions of xn that are observed. We define oin = d if
∑d

j=1 rjn = i

and rdn = 1. In other words, oin = d if d is the ith observed dimension of xn. We introduce a

corresponding vector mn of length D −Dn listing the dimensions of xn that are missing. We

define min = d if
∑d

j=1(1− rjn) = i and (1− rdn) = 1. In other words, min = d if d is the ith

missing dimension of xn.

We use superscripts to denote sub-vectors and sub-matrices. For example, xon
n denotes the

sub-vector of xn corresponding to the observed elements of xn. The element-wise definition of

xon
n is xon

in = xoinn. Similarly, if Σ is a D×D matrix then, for example, Σonmn is the sub-matrix

of Σ obtained by selecting the rows corresponding to the observed dimensions of xn, and the

columns corresponding to the missing dimensions of xn. The element-wise definition of Σonmn

is Σonmn

ij = Σoinmjn
. For simplicity we will often use the notation xo and Σom in place of xon

n

or Σonmn when it is clear which pattern of observed or missing entries is intended.

Projection matrices are another very useful tool for dealing with sub-vectors and sub-

matrices induced by missing data. We define the projection matrix Ho
n where Ho

ijn = [ojn = i].

The matrix Ho
n projects a vector from the Dn dimensional space corresponding to the observed

dimensions of xn to the full D dimensional feature space. The missing dimensions are filled

with zeros. Similarly, we define the projection matrix Hm
n such that Hm

ijn = [mjn = i]. The

matrix Hm
n projects a vector from the (D−Dn) dimensional space corresponding to the missing

dimensions of xn to the full D dimensional feature space. The observed dimensions are filled

with zeros. As we will see later, these projection matrices arise naturally when taking matrix

and vector derivatives of the form ∂Σonmn/∂Σ.

1.2.2 Notation and Conventions for Vector and Matrix Calculus

Throughout this work we will be deriving optimization algorithms that require the closed-form

or iterative solution of a set of gradient equations. The gradient equations are derived using

matrix calculus. In this section we review the matrix calculus conventions used in this work.

First, we assume that all vectors are column vectors unless explicitly stated otherwise. We

will follow the convention that the gradient of a scalar function f with respect to a matrix-

valued function g of dimension A×B is a matrix of size A×B as seen in Equation 1.2.1. We

adopt this convention since it avoids the need to transpose the matrix of partial derivatives

when solving gradient equations, and performing iterative gradient updates.
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∂f

∂g
=




∂f
∂g11

∂f
∂g12

· · · ∂f
∂g1B

∂f
∂g21

∂f
∂g22

· · · ∂f
∂g2B

...
...

. . .
...

∂f
∂gA1

∂f
∂gA2

· · · ∂f
∂gAB




(1.2.1)

We will follow the convention that the matrix of partial derivatives of a vector-valued func-

tion f of A dimensions with respect to a vector-valued function g of B dimensions has size B×A
as seen in Equation 1.2.2. In the case where f and g are both multi-dimensional functions, we

adopt the convention of expressing the matrix of partial derivatives element-wise.

∂f

∂g
=




∂f1

∂g1

∂f2

∂g1
· · · ∂fA

∂g1

∂f1

∂g2

∂f2

∂g2
· · · ∂fA

∂g2

...
...

. . .
...

∂f1

∂gB

∂f2

∂gB
· · · ∂fA

∂gB




(1.2.2)

Let f be an A dimensional vector-valued function, g be a B dimensional vector-valued

function, and h be a C dimensional vector-valued function. Assuming that f is a function of

g and g is a function of h, we define the chain rule for vector calculus in Equation 1.2.3. It is

important to note that the order of multiplication of terms in Equation 1.2.3 is reversed from

the ordering usually used in univariate calculus. This is necessary since matrix multiplication

is non-commutative. Also note that the result of applying the chain rule in this form respects

our convention that the matrix of partial derivatives should have size C × A since f has A

dimensions and h has C dimensions.

∂f

∂h
=
∂g

∂h

∂f

∂g
=




∂g1

∂h1

∂g2

∂h1
· · · ∂gB

∂h1

∂g1

∂h2

∂g2

∂h2
· · · ∂gB

∂h2

...
...

. . .
...

∂g1

∂hC

∂g2

∂hC
· · · ∂gB

∂hC







∂f1

∂g1

∂f2

∂g1
· · · ∂gA

∂g1

∂f1

∂g2

∂f2

∂g2
· · · ∂gA

∂g2

...
...

. . .
...

∂f1

∂gB

∂f2

∂gB
· · · ∂gA

∂gB




(1.2.3)

Now assume that f is an A×B dimensional matrix-valued function, g is a C×D dimensional

matrix-valued function, and h is an E×F dimensional matrix-valued function. Again assuming

that f is a function of g and g is a function of h, we define the chain rule for matrix calculus

element-wise:
∂fij

∂hmn
=
∑C

k=1

∑D
l=1

∂fij

∂gkl

∂gkl

∂hmn



Chapter 2

Decision Theory, Inference, and

Learning

This chapter introduces the learning and inference frameworks used in this thesis. We adopt

a decision-theoretic perspective based on a general prediction problem where we are given a

set of pairs {yn,xn}, n = 1, ..., N along with a loss function l(y, ŷ). The goal is to estimate

a prediction function or decision rule f(x) that achieves the lowest possible loss on future

examples. In the collaborative prediction case, yn corresponds to a subset of the values in xm
n ,

and xn is replaced by xo
n. In the classification with missing features case, yn takes a single

categorical value, and xn is replaced with xo
n.

We begin by reviewing decision making and the Bayes optimal prediction function. We then

turn to the Bayesian inference framework and introduce Markov chain Monte Carlo (MCMC)

methods including the Metropolis Hastings algorithm and the Gibbs sampler. We present the

Maximum a Posteriori principle as an approximation to Bayesian inference, and review the

Expectation Maximization algorithm. We discuss a direct function approximation framework

that includes neural networks, and logistic regression. We briefly review empirical evaluation

procedures for estimating expected loss.

2.1 Optimal Prediction and Minimizing Expected Loss

We assume that there is a fixed but unknown generative probability distribution pG(y,x) over

pairs (y,x). The goal of the prediction problem can be formally stated as selecting a prediction

function f(x) that achieves the lowest possible expected loss on examples drawn from pG(y,x).

The expected loss of a prediction function f(x) under the generative distribution pG(y,x) is

defined in equation 2.1.1.

7
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EpG
[l(y, f(x))] =

∫ ∫
l(y, f(x))pG(y,x)dydx (2.1.1)

The theoretical minimum value of the expected loss is known as the Bayes optimal loss

or the Bayes error rate. The Bayes optimal loss is achieved by the Bayes optimal prediction

function shown in Equation 2.1.2 [57, p. 174]. The Bayes optimal prediction fO(x) given a

vector x is equal to the value ŷ that minimizes the expectation of the loss taken with respect

to the conditional distribution pG(y|x). The Bayes optimal loss is expressed in Equation 2.1.3.

fO(x) = arg min
ŷ

∫
l(y, ŷ)pG(y|x)dy (2.1.2)

EpG
[l(y, fO(x))] =

∫ ∫
l(y, fO(x))pG(y,x)dydx (2.1.3)

Prediction frameworks differ in how they approximate the Bayes optimal prediction function.

Bayesian methods are closest in spirit to the Bayes optimal prediction rule and replace pG(y|x)

in Equation 2.1.2 with the posterior distribution over a set of models distributions. Maximum a

posteriori approximations replace pG(y|x) in Equation 2.1.2 with the single model distribution

that attains the highest posterior probability among a given set of model distributions. The

classical maximum likelihood principle replaces pG(y|x) in Equation 2.1.2 with the single model

distribution with the highest likelihood given the training data. Direct function approximation

frameworks including neural networks and logistic regression avoid approximating the predictive

distribution pG(y|x) by directly approximating the optimal prediction function.

2.2 The Bayesian Framework

The Bayesian solution to the prediction problem consists of specifying a family of probability

distributions (a model), and assigning a prior probability to each distribution in the family.

Once the sample of data is observed, the posterior predictive distribution is computed and sub-

stituted for the unknown pG(y|x). To make this concrete, assume that the model is parametric

with parameter θ. Each distribution in the model family has the form pM (y|x, θ) for some

value of θ. The prior probability of each distribution in the set can then be given as a prior

probability q(θ) on the parameter θ.
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2.2.1 Bayesian Approximation to the Prediction Function

The posterior distribution of θ is found using Bayes rule as shown below in Equation 2.2.1. The

posterior predictive distribution is shown in Equation 2.2.2.

pM (θ|{(yn,xn)}n=1:N , q) =
q(θ)

∏N
n=1 pM (yn|xn, θ)∫

q(θ)
∏N

n=1 pM (yn|xn, θ)dθ
(2.2.1)

pM (y|x, {(yn,xn)}n=1:N , q) =

∫
pM (y|x, θ)pM (θ|{(yn,xn)}n=1:N , q)dθ (2.2.2)

The Bayesian prediction function given in Equation 2.2.3 is obtained by substituting the

model posterior distribution shown in equation 2.2.2 for the true conditional distribution

pG(y|x) in Equation 2.1.2.

fB(x) = arg min
ŷ

∫
l(y, ŷ)pM (y|x, {(yn,xn)}n=1:N , q)dy (2.2.3)

2.2.2 Bayesian Computation

The Bayesian approximation strategy relies on the ability to analytically compute the inte-

grals in Equations 2.2.1 and 2.2.2. Practical applications of the Bayesian approach rely on

an additional layer of approximations provided by Markov chain Monte Carlo methods [51, p.

357-381]. Monte Carlo methods compute integrals and expectations by reducing them to sums

over a finite number of sample points. In Markov chain Monte Carlo methods, the sample

points are provided by Markov chain methods like the Metropolis Hastings algorithm and the

Gibbs sampler.

Suppose, for the moment, that we have a method for drawing independent samples θs

from the parameter posterior given in Equation 2.2.1. The Monte Carlo approximation to

the posterior predictive distribution is given in Equation 2.2.4. The corresponding prediction

function is given in Equation 2.2.5.

pM (y|x, {(yn,xn)}n=1:N , q) ≈
1

S

S∑

s=1

pM (y|x, θs) (2.2.4)

fB(x) ≈ arg min
ŷ

∫
l(y, ŷ)

1

S

S∑

s=1

pM (y|x, θs)dy (2.2.5)

The validity of the Monte Carlo approximation relies on asymptotic theory which states that

as the number of independent samples goes to infinity, the sampling approximation becomes

arbitrarily close to the true distribution. For some posterior expectations, the Monte Carlo
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approximation can be quite accurate using only a small number of samples [51, p. 357].

In practice it is not possible to draw independent samples θs from an arbitrary posterior

distribution. Markov chain sampling methods define a Markov chain where the state at time t

is the parameter vector θt, and the equilibrium distribution is the posterior distribution of θ.

Samples are obtained by starting the Markov chain in a random initial state, and running it

for a sufficient number of steps to reach equilibrium. If sufficient iterations are allowed between

samples at equilibrium, the samples will be approximately independent draws from the model

posterior [25, p. 287].

The Metropolis-Hastings Algorithm

For simplicity we will drop the dependence on the data and write the posterior distribution on θ

as p(θ). The Metropolis-Hastings algorithm requires the specification of a proposal distribution

p′(θnew|θt) that gives the probability of transitioning to the state θnew from the current state

θt. The algorithm proceeds by sampling a candidate value θnew from p′(θnew|θt), and setting

θt+1 to θnew with probability at+1, and θt with probability 1 − at+1. The probability at+1 is

called the acceptance probability and is defined below [25, p. 291].

at+1 = max

(
1,
p(θnew)p′(θt|θnew)

p(θt)p′(θnew|θt)

)
(2.2.6)

θt+1 ←
{
θnew With probability at+1

θt otherwise
(2.2.7)

A useful property of the Metropolis-Hastings method is that the normalizing factor in the

posterior cancels out in the acceptance ratio. As a result, it suffices to compute the posterior

up to a constant of proportionality. Asymptotic convergence of the Markov chain defined by

the Metropolis-Hastings updates to the posterior distribution p(θ) is guaranteed if p′(θ′|θ) > 0

for all θ′, θ [51, p. 366].

The Gibbs Sampler

The Gibbs sampler is a particular form of Metropolis-Hastings algorithm based on updating

each parameter θk in the parameter vector θ according to its posterior distribution given the

remaining parameters. The utility of the Gibbs sampler stems from the fact that in structured

models it is often possible to sample efficiently from the posterior distribution of a single pa-

rameter or a small group of parameters, even when it is not possible to sample efficiently from

the complete posterior. A single round of Gibbs updates is described below [25, p. 287].
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θ1t+1 ∼ p(θ1|θ2t, ..., θKt, {(yn,xn)}n=1:N )

...

θKt+1 ∼ p(θK |θ1t+1, ..., θK−1t+1, {(yn,xn)}n=1:N )

Since the proposal distribution for each update is based on the actual conditional distri-

bution for each parameter, the acceptance ratio for the Gibbs proposal distribution is always

equal to 1, and the proposal is always accepted.

2.2.3 Practical Considerations

Assuming the required regularity conditions hold for the Markov chain implementing a given

posterior distribution, one still needs to know both how long to simulate the Markov chain

before equilibrium is reached and how long to wait between samples. As MacKay indicates,

lower bounds on time to equilibrium can sometimes be established, but precisely predicting

time to equilibrium is a difficult problem [51, p. 379]. In general, it is not possible to guarantee

that equilibrium has been reached in a running simulation. It could always be the case that if

the simulation were run for additional steps, a new set of states with high posterior probability

could be found. Nevertheless, the use of approximate Bayesian methods based on pragmatic

choices for the number of samples and the length of the simulation can lead to good results in

practice.

2.3 The Maximum a Posteriori Framework

The maximum a posteriori (MAP) approach to the prediction problem is based on selecting

the single distribution with highest posterior probability from a family of probability distribu-

tions given a set of observations and a prior distribution. The classical maximum likelihood

framework developed by Fisher [19] is based on selecting the single distribution with the high-

est likelihood given the data. We restrict our discussion to the more general case of MAP

estimation.

2.3.1 MAP Approximation to The Prediction Function

Again assume that we have a family of distributions indexed by a parameter θ such that each

distribution in the family has the form pM (y|x, θ) with prior probability q(θ). The posterior

distribution of θ is again found using Bayes rule as shown below. θMAP is set to a value of θ
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that obtains maximum posterior probability. Note that in general several different parameter

vectors θ could attain the same maximum value of the posterior probability.

pM (θ|{(yn,xn)}n=1:N , q) =
q(θ)

∏N
n=1 pM (yn|xn, θ)∫

q(θ)
∏N

n=1 pM (yn|xn, θ)dθ
(2.3.1)

θMAP = arg max
θ

pM (θ|{(yn,xn)}n=1:N , q) (2.3.2)

The maximum a posteriori prediction function is obtained by substituting the single dis-

tribution pM (y|x, θMAP ) for pG(y|x) in Equation 2.1.2. The maximum a posterior prediction

function fMAP is shown in Equation 2.3.3.

fMAP (x) = arg min
ŷ

∫
l(y, ŷ)P (y|x, θMAP )dy (2.3.3)

2.3.2 MAP Computation

Computation of the maximum a posteriori parameters θMAP is accomplished through opti-

mization of the posterior probability. Assuming that all first order partial derivatives of the

posterior distribution with respect to the parameters exist, the value of θMAP can be found by

solving the following set of gradient equations. Note that the normalization term is constant

with respect to θ, and has been omitted below.

∂

∂θk
q(θ)

N∏

n=1

pM (yn|xn, θ) = 0 ... for all K (2.3.4)

For more complex models, the system of equations must be solved using non-linear numerical

optimization techniques such as gradient ascent, conjugate gradient, or Newton methods [62].

It is important to note that these are all local optimization methods in the sense that they

return a solution consisting of a parameter vector θ∗ that is only guaranteed to be optimal in

a local neighbourhood. In many practical situations it is not possible to fully implement the

MAP principle. Instead, the best locally optimal set of parameters found using random restarts

of the optimization procedure is substituted for θMAP . The error in such an approximation is

impossible to determine in general. Nevertheless, these methods are often found to work well

in practice.

The Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm due to Dempster, Laird and Rubin is an itera-

tive numerical procedure for finding maximum a posteriori parameter estimates [17]. It is useful
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when the probability pM (yn|xn, θ) is obtained by integrating over latent or unobserved variables

Z. For example, a finite mixture distribution has the form
∑K

k=1 p(yn|xn, Z = k, θ)p(Z = k|θ).
The EM algorithm proceeds by randomly initializing the parameters to θ0. On each iteration

t, the posterior probability of the missing variables Z is computed for each data case n given

the values of the observed variables and the current parameters. In the maximization step, θt+1

is set to the value which maximizes the expected complete log posterior. These two updates

are iterated as shown below until the posterior converges.

E-Step: qn(z) ← p(y|z,x, θt)p(z|θt)∑
z p(y|z,x, θt)p(z|θt)

M-Step: θt+1 ← arg max
θ

N∑

n=1

∑

z

qn(z) log (p(y|z,x, θ)p(z|θ)) + log(q(θ))

The primary advantage of the Expectation Maximization algorithm over other general iter-

ative optimization procedures is that each iteration is guaranteed to improve the value of the

log posterior. General optimization techniques require the use of line search or backtracking to

provide a similar guarantee. Of course, like any general optimization technique, the Expectation

Maximization procedure returns a locally optimal solution.

2.4 The Direct Function Approximation Framework

In the Bayesian and MAP frameworks, the main idea is to approximate the true conditional

distribution pG(y|x) using an alternative predictive distribution inferred from a sample of data.

The alternative predictive distribution is then used to derive a prediction function. The al-

ternative approach is to circumvent the estimation of a predictive distribution pM (y|x, θ), and

instead directly approximate the prediction function.

Direct function approximation is used with models like perceptrons [63], neural networks

[7], and support vector machines [10]. The direct function approximation approach to the

prediction problem requires defining a family of functions, and specifying a rule for choosing

the best function given a sample of data.

2.4.1 Function Approximation as Optimization

Suppose that the set of functions is parametric with typical elements of the form fθ(x), where

θ is the parameter vector. The rule for choosing the best value of θ given the sample of N

observed pairs (yn,xn) is normally described as the solution to a minimization problem as

shown in Equation 2.4.1. The objective function L maps each function fθ to a real-valued

score.
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θ∗ = arg min
θ

L(fθ, {yn,xn}n=1:N ) (2.4.1)

Given a loss function l, the most straightforward objective function is the empirical loss

given by Equation 2.4.2. Optimizing the empirical loss function selects a function fθ with the

minimum loss on the training set. Note that this function need not be unique.

LE(fθ, {yn,xn}n=1:N ) =
1

N

N∑

n=1

l(yn, fθ(xn)) (2.4.2)

2.4.2 Function Approximation and Regularization

The empirical loss function LE is often a poor estimator of the expected loss EpG
[l(y, fθ(x))]

due to overfitting the training data. Regularization methods modify the empirical loss in a way

that penalizes complex functions. Let g(θ) be a function that assigns a real value to each fθ

depending on its complexity for a given notion of complexity. We assume that g(θ) decreases

as the complexity of fθ increases. Equation 2.4.3 gives a regularized objective function LR

with parameter λ controlling the trade-off between fitting the training data and penalizing the

complexity of the functions.

LR(fθ, {yn,xn}n=1:N ) =
1

N

N∑

n=1

l(yn, fθ(xn)) + λg(θ) (2.4.3)

Subset selection, more commonly known as feature selection in the machine learning com-

munity, is a form of regularization that trades off between loss on the training set and the

number of features used by the model. Hoerl’s ridge regression uses a quadratic regularization

function of the form g(θ) = θT θ [38]. Ridge regression is more commonly referred to as “weight

decay” or L2 regularization in the machine learning literature [35]. Tibshirani’s “lasso” corre-

sponds to the penalty function g(θ) =
∑K

k=1 |θk| [72]. This regularization function is known in

machine learning research as L1 regularization. L2 regularization has the advantage that the

regularized objective function remains continuous and differentiable if the original loss func-

tion is continuous and differentiable. Subset selection requires a search over subsets of features

that can be costly to perform. L1 regularization introduces discontinuities in the regularized

objective function, which require specialized optimization methods.
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2.5 Empirical Evaluation Procedures

While theoretical justifications can be given for each of the prediction frameworks discussed

in this chapter, in practice, the underlying assumptions are almost never known to hold with

certainty. As a result, the performance of prediction methods must be established through the

use of empirical evaluation procedures that estimate expected loss. There are several possible

estimates for expected loss including training set loss, loss on a held out validation set, and

cross validation loss.

2.5.1 Training Loss

The training loss can sometimes give an accurate estimate of the expected prediction loss, but

in most cases will be overly optimistic. Denote the training set by DT = {yn,xn|n = 1, ..., N},
and a function estimated based on DT by fθ|DT

. The training loss of the function fθ|DT
is given

in Equation 2.5.1.

LT (fθ|DT
, DT ) =

1

N

N∑

n=1

l(yn, fθ|DT
(xn)) (2.5.1)

In a classification setting with a limited number of input patterns x, the training loss can

be an accurate estimate of the expected loss if all patterns are seen during training. In a

classification setting where the number of possible input patterns is infinite, a method that

achieves zero training loss can have expected loss arbitrarily close to that of random guessing.

2.5.2 Validation Loss

The most straightforward, unbiased estimate of the expected loss is obtained by randomly

partitioning the available data into a training set DT = {yn,xn|n = 1, ..., NT } and a validation

set DV = {yn,xn|n = 1, ..., NV }. The function fθ|DT
is selected based on the training set DT

only. The loss is assessed on the validation set DV .

LV (fθ|DT
, DV ) =

1

NV

NV∑

n=1

l(yn, fθ|DT
(xn)) (2.5.2)

The variance of validation loss as an estimate of expected loss can be lowered by increasing

the size of the validation set. This exposes the obvious drawback of validation loss: using

a separate validation set necessitates a reduction in the available training data. When large
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amounts of training data are available, this may not be problematic. With small and medium

sized samples, we might hope to make more effective use of the available data.

2.5.3 Cross Validation Loss

Cross validation loss provides an estimate of the expected loss that can be nearly unbiased

[32, p. 215]. To compute the cross validation loss, the available data is randomly partitioned

into K equally sized blocks D1, ..., DK . We define the data set D−k =
⋃

l 6=k Dl. For each k, a

function fθ|D−k
is selected based on the training set D−k, and evaluated on the validation set

Dk. The loss values obtained by testing on each Dk are averaged together to obtain the cross

validation loss [71]. The cross validation loss is defined in Equation 2.5.3. For convenience we

define fk
θ|D = fθ|D−k

, and introduce an indexing function κ(n), which maps data case indices

1, ..., N to the corresponding block indices 1, ...,K.

LCV (fθ|D, D) =
1

N

N∑

n=1

l(yn, f
κ(n)
θ|D (xn)) (2.5.3)

By alternately holding out several small subsets of data for testing, we are able to use more

data for training each model. Cross validation can also be used as a method for selecting free

parameters in learning algorithms by evaluating the cross validation loss of several alternative

parameter sets.



Chapter 3

A Theory of Missing Data

In this chapter we review the theory of missing data due to Little and Rubin [49]. We formally

introduce the classes of missing data. We present a detailed analysis of the missing at random

assumption in the case of multivariate missing data. We review the effect of different types

of missing data on probabilistic inference. Finally, we highlight the impact of data model

misspecification on inference with missing data.

3.1 Categories of Missing Data

There are essentially two ways to factorize the joint distribution of the data, the latent variables,

and the response indicators as far as the response indicators are concerned. In the first case

the joint distribution is factorized as P (R|X,Z, µ)P (X,Z|θ). P (R|X,Z, µ) is referred to as the

missing data model, and P (X,Z|θ) is referred to as the complete data model. The intuition is

that the response probability depends on the true values of the data vector and latent variables.

In the second factorization the conditioning is reversed, and the joint distribution is written

as P (X,Z|R, ϑ)P (R|ν). The intuition is that each pattern of missing data specifies a different

distribution for the data and latent variables. [49, p. 219]. In this chapter and throughout most

of this work, we adopt the first factorization, but it is important to note that the alternative

factorization is equally valid.

In the classification scheme proposed by Little and Rubin, the first category of missing

data is called “missing completely at random” or MCAR. Data is MCAR when the response

indicator variables R are independent of the data variables X and the latent variables Z. The

MCAR condition can be succinctly expressed by the relation P (R|X,Z, µ) = P (R|µ).

The second category of missing data is called “missing at random” or MAR. The MAR

condition is frequently written as P (R = r|X = x,Z = z, µ) = P (R = r|Xo = xo, µ) for all xm,

z, and µ [49, p. 12]. It is intended to express the fact that the probability of response can not

17
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depend on missing data values or latent variables. A precise definition of the MAR condition

requires the introduction of additional notation. Define a function f(x, r) = v such that vd = xd

if rd = 1, and vd = ∅ if rd = 0. The function f() maps a data vector and response indicator

vector into an alternative representation where the missing dimensions of x are replaced with

the symbol ∅. Given x and r we compute v, and consider the set C = {(x′, z′)|P (X = x′,Z =

z′) > 0, f(x′, r) = v}. The set C contains all pairs (x′, z′) with non-zero probability where x′

agrees with x on the observed dimensions specified by r.

The missing dimensions of x are missing at random for a fixed response vector r if P (R =

r|X = x′,Z = z′, µ) is constant for all (x′, z′) in the set C, and all values of the parameter µ

[64, p. 582]. In other words, given the values of the observed dimensions, the probability of the

response vector is the same regardless of the values we fill in for the missing dimensions and

latent variables.

The last class of missing data is referred to by several names including “non-ignorable” (NI)

and “not missing at random” (NMAR). Data is NMAR when the response indicator variable

R depends on either the unobserved values contained in xm, or the unobserved values of the

latent variables z. It may also depend on the observed data variables xo. A simple example

of NMAR occurs when the probability that a particular data dimension is missing depends on

the value of that data dimension.

3.2 The Missing at Random Assumption and Multivariate Data

The interpretation and implications of the missing at random assumption can be quite subtle

in the multivariate setting with arbitrary patterns of missing data. In many of the examples

considered by Little and Rubin it is assumed that the data vector can be partitioned into two

parts where the first part is subject to non-response, and the second part is always observed.

If we define the always observed sub-vector to be xa, then a missing data model of the form

P (R = r|Xa = xa, µ) satisfies the missing at random condition.

In the multivariate setting with arbitrary patterns of missing data, we find it more intuitive

to think of the missing at random condition as imposing constraints on the parameters of the

conditional distribution P (R = r|X = x, µ). Recall that the precise definition of the missing at

random assumption states that for a fixed value of r, P (R = r|X = x′, µ) must take the same

value for any complete vector x′ that agrees with the observed dimensions of x as specified by

r.

In the case where x is a vector of discrete values, we can parameterize the conditional

distribution as P (R = r|X = x′, µ) = µrx′ . The missing at random assumption then specifies

constraints on the parameters µrx′ . In particular, if u and w are complete vectors that both
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X\R 0 0 0 1 1 0 1 1

0 0 α β γ 1− α− β − γ
0 1 α δ γ 1− α− δ − γ
1 0 α β λ 1− α− β − λ
1 1 α δ λ 1− α− δ − λ

Table 3.1: Restrictions imposed on the parameterization of P (R = r|X = x) by the MAR
condition.

agree with the observed dimensions of x as specified by r , the MAR condition requires µru =

µrw.

It is important to note that the MAR condition applies to individual response vectors r

and corresponding data vectors x. It may be the case that the missing data in one data case

generated from a particular missing data mechanism is missing at random, while the missing

data in another data case is not missing at random. In order for a missing data model to only

generate random missing data, the MAR parameter constraints must hold for every vector r

and corresponding instantiation of xo.

To help understand the restrictions placed on the parameterization of P (R = r|X = x) by

the missing at random assumption, we elaborate on an example presented by Little and Rubin

[50, p. 18]. Consider two dimensional binary data vectors subject to non-response on both

dimensions. The missing at random assumption places a set of constraints on the parameters

of P (R = r|X = x, µ) that requires certain elements of the conditional distribution to be equal.

We illustrate this in Table 3.1.

When R = [0, 0], neither X1 nor X2 is observed, and the missing at random condition

stipulates that P (R = [0, 0]|X = x) must be equal for all x. In the case where R = [0, 1], X2

is observed. We get the restriction that P (R = [0, 1]|X1 = x1, X2 = 0) must be equal for all

x1, and P (R = [0, 1]|X1 = x1, X2 = 1) must be equal for all x1. In the case where R = [1, 0],

X1 is observed. We get the restriction that P (R = [1, 0]|X1 = 0, X2 = x2) must be equal for

all x2, and P (R = [1, 0]|X1 = 1, X2 = x2) must be equal for all x2. When all dimensions are

observed, the missing at random assumption puts no restrictions on P (R = [1, 1]|X = x), and

its value is simply determined by the normalization constraint.

The essence of the missing at random condition is the symmetry imposed on the missing

data model, which make it possible to determine P (R = r|X = x, µ) given only r, and the

observed values of x. For example, suppose that x2 = 0, and x1 is unobserved so that r = [0, 1].

Even though we do not know the value of x1 we can still determine that the value of P (R =

r|X = x, µ) must be β, since it is β both when x1 = 0, and when x1 = 1. When the MAR

condition is satisfied, the observed values in x always contain exactly the information needed

to determine P (R = r|X = x, µ).
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From a modeling perspective, it makes more sense to assert that the random variable R1

either depends on the random variable X1, or is independent of the random variable X1. If

R1 is always dependent on X1, and X1 is missing in a given data case, then X1 will not be

missing at random. This makes parameter estimation more difficult. On the other hand, the

MAR assumption allows R1 to depend on X1 for some values of R1, and not for others. This is

convenient, but unnatural and difficult to justify. Little and Rubin acknowledge that assuming

the missing at random condition in a multivariate setting with arbitrary patterns of missing

data is not very realistic, but can sometimes lead to reasonable results if there are sufficient

observed covariates to do a reasonable job of predicting the response patterns [50, p. 19].

3.3 Impact of Incomplete Data on Inference

Rubin considered the impact of incomplete data on Bayesian inference [64, p. 587]. These

results are also contained in the more recent text by Schafer [67, p. 17]. In this section we

describe the effect of random missing data on Bayesian inference, and contrast it with the effect

of non-random missing data. The results for maximum likelihood and maximum a posteriori

inference are analogous, and discussed at length by Little and Rubin [49, p. 89].

Consider a joint parametric model over data variables, latent variables, and response indi-

cators of the form P (R|X,Z, µ)P (X,Z|θ), and assume the prior distribution is factorized as

P (θ|ω)P (µ|η). The posterior distribution P (θ|{xn, rn}1:N , ω, η) on θ given a sample of incom-

plete data vectors xn, n = 1, ..., N , and the prior parameters is given in Equation 3.3.1.

P (θ|{xn, rn}1:N , ω, η) ∝ P (θ|ω)

∫
P (µ|η)

N∏

n=1

∫ ∫
P (xo

n,x
m, z|θ)P (rn|xo

n,x
m, z, µ)dxmdzdµ

(3.3.1)

Without making any simplifying assumptions, the missing data and complete data models

are coupled together by the integration over both the missing data values, and the latent

variable values. Under the missing at random or missing completely at random conditions,

P (rn|xo
n,x

m, z, µ) is constant for all values of xm and z when we fix rn and xo
n. As a result,

the posterior on θ is completely independent of rn, µ and η, and the missing data model

can be removed from the posterior. The integration over missing data values then reduces to

marginalization within the complete data model only. The result of these simplifications is the

observed data posterior shown in Equation 3.3.2.

P obs(θ|{xn, rn}1:N , ω) ∝ P (θ|ω)
N∏

n=1

∫
P (xo

n, z|θ)dz (3.3.2)
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x P (x) P (R = [0, 0]|x) P (R = [0, 1]|x) P (R = [1, 0]|x) P (R = [1, 1]|x)

0 0 a α β γ 1− α− β − γ
0 1 b α δ γ 1− α− δ − γ
1 0 c α β λ 1− α− β − λ
1 1 d α δ λ 1− α− δ − λ

Table 3.2: Specification of true P (X = x) and P (R = r|X = x) satisfying MAR.

The MCAR and MAR conditions effectively allow us to ignore the missing data model

without impacting the validity of inference. When the MCAR and MAR conditions fail to

hold, the missing data is not missing at random. Ignoring the missing data model and basing

inference for θ on the observed data posterior will result in biased inference for data model

parameters, and biased predictions.

3.4 Missing Data, Inference, and Model Misspecification

It is important to note that when then MAR condition fails to hold it is not sufficient to use an

arbitrary missing data model. Inference will also be biased if an incorrect missing data model

is used. A somewhat more surprising result is that even if the MAR assumption holds for the

true generative model, inference for the parameters of a simpler data model can still be biased.

This can be a problem in areas like machine learning where structured models are often used

to obtain tractable learning methods, and to avoid overfitting.

To illustrate this issue again consider the simple setting of binary data vectors x in two

dimensions subject to missing data. The parameters of the missing data mechanism P (R =

r|X = x) are given in Table 3.2, along with the data distribution P (X = x). Note that the

missing data model satisfies the MAR condition as described in Section 3.2. The missing data

contained in any data case sampled from the generative model is missing at random.

The data variables X1 and X2 will not be independent in general under this generative

process. However, as is often the case in machine learning, we consider learning a simpler,

factorized model of the form PM (X = x|θ) =
∏D

d P
M (Xd = xd|θd) where θvd = PM (Xd = v).

Given the generative parameters in Table 3.2, we know that the correct model parameter values

are θ11 = c + d and θ12 = b + d. Given a sample of data from the generative process, we may

be tempted to estimate the parameters θvd using the model’s observed data likelihood function

since the missing data is missing at random.

The observed data likelihood function is given in Equation 3.4.1. We analytically solve

for the maximum likelihood parameter estimates using Lagrange multipliers to enforce the

normalization constraints, obtaining the solution shown in Equation 3.4.2.
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Lobs =
∑

n

∑

d

∑

v

rdn[xdn = v] log θvd (3.4.1)

∂Lobs

∂θvd
=

∑

n

rdn[xdn = v]

θvd
− λ = 0

λθvd =
∑

n

rdn[xdn = v]

∑

v

λθvd =
∑

v

∑

n

rdn[xdn = v]

λ =
∑

n

rdn

θvd =

∑
n rdn[xdn = v]∑

n rdn
(3.4.2)

This maximum likelihood estimation procedure is asymptotically equivalent to computing

P (Xd = v|Rd = 1) using the true generative parameters. Consider the specific case of the

asymptotic estimate of PM (X1 = 1), or equivalently P (X1 = 1|R1 = 1). As seen in Equation

3.4.4, the asymptotic estimate for PM (X1 = 1) is not equal to the true value c + d of the

marginal distribution of X1 unless β = δ in the missing data model. This corresponds to the

more stringent assumption that X2 is missing completely at random.

P (X1 = 1|R1 = 1) =
P (R1 = 1, |X1 = 1)P (X1 = 1)

P (R1 = 1)
(3.4.3)

=
c(1− α− β) + d(1− α− δ)

a(1− α− β) + b(1− α− δ) + c(1− α− β) + d(1− α− δ)

=
(c+ d)(1− α)− cβ − dδ

(1− α)− (a+ c)β − (b+ d)δ

= c+ d ... only if β = δ (3.4.4)

In general, computing the marginal distribution on dimension d from the observed data

only will be biased unless all the other dimensions are missing completely at random. When

the stronger missing completely at random condition is not believed to hold, the only correct

solution is to estimate the full joint distribution, recover the data model parameters, and use

these to estimate the parameters of the marginal distributions. Computing the parameters

a, b, c, d of the true data generating distribution P (X = x) can be accomplished using the

Expectation Maximization algorithm. We redefine the parameters of the true distribution to

P (X1 = i,X2 = j) = φij for convenience. Define the count variables:
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β − δ True P (X1 = 1) Est. P (X1 = 1) True P (X1 = 1|R1 = 1) Est. PM (X1 = 1)

0.5 0.8000 0.7999± 0.0007 0.7961 0.7961± 0.0007

1.0 0.8000 0.8004± 0.0006 0.7917 0.7923± 0.0006

1.5 0.8000 0.7996± 0.0006 0.7868 0.7860± 0.0007

2.0 0.8000 0.8011± 0.0007 0.7812 0.7826± 0.0008

2.5 0.8000 0.7990± 0.0007 0.7750 0.7737± 0.0008

3.0 0.8000 0.8000± 0.0007 0.7679 0.7679± 0.0007

3.5 0.8000 0.7994± 0.0008 0.7596 0.7582± 0.0009

4.0 0.8000 0.7999± 0.0009 0.7500 0.7501± 0.0010

4.5 0.8000 0.7992± 0.0010 0.7386 0.7379± 0.0010

5.0 0.8000 0.7986± 0.0010 0.7250 0.7241± 0.0010

Table 3.3: Results of a simulation experiment on learning marginal parameters.

C1
ij =

∑

n

[r1 = 1][r2 = 1][x1 = i][x2 = j]

C2
i =

∑

n

[r1 = 1][r2 = 0][x1 = i]

C3
j =

∑

n

[r1 = 0][r2 = 1][x2 = j]

One iteration of the EM algorithm can be defined in terms of the current estimate for the

parameters φ and the observed count variables. We give the EM iteration in Equation 3.4.5

[67, p. 44].

φij ←
1

N

(
C1

ij + C2
i

φij∑
j φij

+ C3
j

φij∑
i φij

)
(3.4.5)

We present a simulation study to empirically verify the claim that the estimation of the

parameters in the factorized model is subject to bias even when the missing data is missing at

random. We generate incomplete data cases using the model specified in Table 3.2. We set the

true parameters as seen below. We fix δ = 0.1, and vary β from 0.15 to 0.6 by varying t from

1 to 10.

a = φ00 = 0.1 b = φ01 = 0.1 c = φ10 = 0.7 d = φ11 = 0.1

α = 0.1 β = 0.1 + t0.05 δ = 0.1 γ = 0.2

For each value of t, we sample 5000 data cases according to the true model. We also compute

the true value of P (X1 = 1) = c + d, which is 0.8 for all t. We use the EM iteration given in

Equation 3.4.5 to estimate all the parameters of the true model from the observed data likelihood
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under the true model. The estimated parameters ĉ and d̂ are then used to estimate P (X1 = 1)

as ĉ + d̂ for each t. Next, the true value of the observed data marginal P (X1 = 1|R1 = 1) is

computed for each t according to Equation 3.4.3. Finally, we use the observed data likelihood

under the factorized model to compute an estimate θ̂11 of PM (X1 = 1) according to Equation

3.4.2. The entire experiment is repeated 100 times for each value of t. The average results are

reported in Table 3.3, along with the standard error of the mean for estimated quantities.

The results show that as the true value of the β parameter diverges from the true value of

the δ parameter, the estimated parameter θ̂11 as given by Equation 3.4.2 diverges from the true

value of P (X1 = 1). In addition, the estimate θ̂11 is approximately equal to the true value of

P (X1 = 1|R1 = 1) as claimed. Finally, the results also show that estimating all the parameters

of the true data model using EM and then estimating P (X1 = 1) as ĉ+ d̂ is not subject to bias

as claimed.

It is important to realize that in order for parameter estimation to be unbiased, it is not

sufficient for missing data to be missing at random with respect to a true underlying data

model. Inference in models that make independence assumptions not present in the underlying

generative process for complete data may be biased unless more stringent assumptions on the

missing data process hold.



Chapter 4

Unsupervised Learning With

Random Missing Data

In this chapter we present unsupervised learning methods under the missing at random as-

sumption. We discuss several types of probabilistic mixture models for categorical data in-

cluding finite mixture models and Dirichlet process mixture models. We present a collapsed

Gibbs sampler for the Multinomial/Dirichlet process mixture model with random missing data.

We review linear Gaussian latent variable models including probabilistic principal components

analysis and factor analysis. We present expectation maximization algorithms for single factor

analysis models and mixtures of factor analysis models with randomly missing data.

The models and methods presented in this chapter provide a starting point for the devel-

opment of novel models and methods for both unsupervised learning with non-random missing

data, and classification with missing features. Experimental results using the methods described

in this chapter are presented in Chapters 5 and 6.

4.1 Finite Mixture Models

A Bayesian network representation of the finite mixture model is given in figure 4.1. We

assume that the data random variables Xn are vectors of length D that are subject to random

missing data. We assume that there are K mixture components. The random variables Zn are

mixture component indicator variables. They indicate which mixture component is associated

with each data case, and take values on the discrete set {1, ...,K}. In practice the random

variables Zn are not observed, and are referred to as latent variables. The parameters of the

mixture component distributions are denoted by βk. The mixing proportions θk give the prior

probability of observing a data case from each of the K mixture components. The mixing

proportions satisfy the constraints
∑

k θk = 1, and θk > 0 ∀k.

25
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φ

βk

K

α

θ

N

Z

Xn

n

Figure 4.1: Bayesian network for the finite mixture model. θk gives the prior probability that
a data case belongs to mixture component k. zn is a latent variable indicating which mixture
component data case n belongs to. βk are the mixture component distribution parameters.
α are the parameters of the prior distribution on θ, and φ are the parameters of the prior
distribution on βk.

We denote the prior distribution on the mixing proportions θ with hyperparameters α by

P (θ|α). We denote the prior distribution on the mixture component distributions βk with

hyperparameters φ by P (βk|φ). A conjugate prior is often used for the mixture proportion

parameters [59, p. 3]. The conjugate prior for the multinomial distribution is the Dirichlet

distribution defined in equation 4.1.1. The parameters αk simultaneously give the scale and

location of the Dirichlet distribution. The scale or concentration of the distribution is given by
∑

k αk. The location in the simplex is equal to the expectation of θ, as given in equation 4.1.2.

D(θ|α) =
Γ(
∑

k αk)∏
k Γ(αk)

∏

k

θαk−1
k (4.1.1)

E[θk|α] =
αk∑K

k=1 αk

(4.1.2)

In a multinomial mixture model the component distributions are a product of indepen-

dent multinomial distributions. A conjugate Dirichlet prior is usually also assumed for the

multinomial component distributions [59, p. 3]. This allows for tractable maximum a poste-

riori learning, as well as tractable Bayesian inference. We give the probability model for the

Bayesian multinomial mixture model with independent Dirichlet prior distributions in equations

4.1.3 to 4.1.6.
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P (θ|α) = D(θ|α) (4.1.3)

P (βdk|φdk) = D(βdk|φdk) (4.1.4)

P (Zn = k|θ) = θk (4.1.5)

P (Xn = xn|Zn = k, β) =
D∏

d=1

V∏

v=1

β
[xdn=v]
vdk (4.1.6)

We give the posterior probability of the parameters β and θ given the prior and a set of N

data cases in Equation 4.1.7. We assume the missing at random condition holds.

P (β, θ|{xn, rn}1:N , α, φ) ∝ Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏

k=1

θαk−1
k ·

D∏

d=1

Γ(
∑V

v=1 φvdk)∏V
v=1 Γ(φvdk)

V∏

v=1

βφvdk−1
vdk

·
N∏

n=1

K∑

k=1

θk

D∏

d=1

V∏

v=1

β
[rdn=1][xdn=v]
vdk (4.1.7)

4.1.1 Maximum A Posteriori Estimation

The maximum a posteriori principle states that we should select the parameters θ and β with

maximum posterior probability. The optimal parameters of the Bayesian multinomial mixture

model can not be found analytically, but an efficient expectation maximization algorithm can

be derived assuming missing data is missing at random. We give the derivation in equations

4.1.8 to 4.1.11. We first find the posterior distribution over the latent variable zn for each data

case n. Note that the posterior only depends on the observed data dimensions as specified by

[rdn = 1].

P (Zn = k|xn, rn, β, θ) = qn(k) =
θk
∏D

d=1

∏V
v=1 β

[rdn=1][xdn=v]
vdk∑K

k′=1 θk′

∏D
d=1

∏V
v=1 β

[rdn=1][xdn=v]
vdk′

(4.1.8)

Next we form the expected complete log posterior function E[logP(θ, β|{xn, rn}1:N , α, φ)]

using the posterior probability of the latent variables, and the complete log posterior of the

parameters. The expectation is taken with respect to the latent mixture indicators only. The

missing data is analytically integrated out of the complete log posterior under the MAR as-

sumption.
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E[logP(θ, β|{xn, rn}n=1:N , α, φ)] = log Γ(
K∑

k=1

αk)−
K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1) log θk

+

K∑

k=1

D∑

d=1

log Γ(

V∑

v=1

φvdk)−
V∑

v=1

log Γ(φvdk) +

V∑

v=1

(φvdk − 1) log βvdk

+
N∑

n=1

K∑

k=1

qn(k)

(
log θk +

D∑

d=1

V∑

v=1

[rdn = 1][xdn = v] log βvdk

)
(4.1.9)

Finally, we find the partial derivatives of the expected complete log posterior with respect to

the multinomial parameters θ, and β. We solve the resulting gradient equations using Lagrange

multipliers to enforce the normalization constraint on the multinomial parameters. The update

for θ is given in Equation 4.1.10.

∂E[logP]

∂θk
=
αk − 1 +

∑N
n=1 qn(k)

θk
− λ = 0

θkλ = αk − 1 +
N∑

n=1

qn(k)

K∑

k=1

θkλ =
K∑

k=1

(αk − 1) +
N∑

n=1

qn(k)

λ = N −K +
K∑

k=1

αk

θk =
αk − 1 +

∑N
n=1 qn(k)

N −K +
∑K

k=1 αk

(4.1.10)

The update for βdk is given in Equation 4.1.11.

∂E[logP]

∂βvdk
=
φvnk − 1 +

∑N
n=1 qn(k)[rdn = 1][xdn = v]

βvdk
− λ = 0

βvdkλ = φvnk − 1 +
N∑

n=1

qn(k)[rdn = 1][xdn = v]

V∑

v=1

βvdkλ =
V∑

v=1

(φvnk − 1) +
N∑

n=1

qn(k)[rdn = 1][xdn = v]

λ =
N∑

n=1

qn(k)[rdn = 1]− V +
V∑

v=1

φvdk
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βvdk =
φvdk − 1 +

∑N
n=1 qn(k)[rdn = 1][xdn = v]

∑N
n=1 qn(k)[rdn = 1]− V +

∑V
v=1 φvdk

(4.1.11)

We give the expectation maximization algorithm for the Bayesian multinomial mixture

model under the missing at random assumption in Equations 4.1.12 to 4.1.14.

E-Step: qn(k)← θk
∏D

d=1

∏V
v=1 β

[rdn=1][xdn=v]
vdk∑K

k′=1 θk′

∏D
d=1

∏V
v=1 β

[rdn=1][xdn=v]
vdk′

(4.1.12)

M-Step: θk ←
αk − 1 +

∑N
n=1 qn(k)

N −K +
∑K

k=1 αk

(4.1.13)

βvdk ←
φvdk − 1 +

∑N
n=1 qn(k)[rdn = 1][xdn = v]

∑N
n=1 qn(k)[rdn = 1]− V +

∑V
v=1 φvdk

(4.1.14)

Efficient Markov chain Monte Carlo inference methods can also be derived for the finite

mixture model [59, p. 3]. However, with very little additional computational effort these same

methods can be used to perform inference in a mixture model with an unbounded number of

mixture components, as we describe in Section 4.2.

4.1.2 Predictive Distribution

Once the model parameters β and θ are learned, the finite mixture model can be used to make

predictions for the unobserved values in a data case. The posterior predictive distribution is

given in Equation 4.1.15.

P (xdn = v|xn, rn, β, θ) =
K∑

k=1

P (xdn = v|zn = k, β)P (zn = k|xn, rn, β, θ)

=

K∑

k=1

βvdk
θk

∏D
d=1

∏V
v=1 β

[rdn=1][xdn=v]
vdk∑K

k′=1 θk′

∏D
d=1

∏V
v=1 β

[rdn=1][xdn=v]
vdk′

(4.1.15)

4.2 Dirichlet Process Mixture Models

The Dirichlet process mixture model is represented as a Bayesian network in figure 4.2. To

sample a complete data set from a DP mixture model we begin by sampling a random distri-

bution φ from DP(αφ0). For each data case n we sample a value βn from φ, and a value of xn

from P (X|βn). Unlike the finite mixture model, the number of mixture components is not fixed

a priori. As more data is sampled from the model, an unlimited number of mixture components

may appear. Data cases n and n′ are said to belong to the same mixture component if βn = βn′ .

We give the probability model for the DP mixture in equations 4.2.1 to 4.2.3.
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φ
0

α

N

nβ

φ

Xn

Figure 4.2: Graphical representation of the Dirichlet process mixture model. α is the concen-
tration of the Dirichlet Process prior while φ0 is the base measure. φ is a random distribution
sampled from the Dirichlet Process prior. βn are the mixture component parameters asso-
ciated with data case n. The mixture component parameters are sampled from the random
distribution φ, which is discrete with probability one. This leads to clustering of the data xn.

P (φ|φ0, α) = DP(αφ0) (4.2.1)

P (βn|φ) = φ(βn) (4.2.2)

P (Xn = xn|β) = P (xn|βn) (4.2.3)

In this section we first review the properties of the Dirichlet process, and its use as a prior

distribution in Bayesian mixture models. As with the finite mixture model, we assume that the

data variables Xn are subject to random missing data, and derive inference algorithms under

the missing at random condition. We present both conjugate and collapsed Gibbs samplers for

the multinomial Dirichlet Process mixture model with random missing data.

4.2.1 Properties of The Dirichlet Process

We begin with Ferguson’s definition of the Dirichlet process: Let S be a continuous space

and let A be a σ-field of subsets of S. Let f be a non-null, finite measure on (S,A). A

process P indexed by elements Ai of A is a Dirichlet process on (S,A) with parameter f if

for any k = 1, 2, ... and any measurable partition (A1, A2, ..., Ak) of S, the random vector

(P (A1), ..., P (Ak)) has a Dirichlet distribution with parameters (f(A1), ..., f(Ak)). That is to

say, (P (A1), ..., P (Ak)) ∼ Dirichlet(f(A1), ..., f(Ak)) [18, p. 214].

Interpreting the definition requires several basic concepts from measure theory which we

briefly review. A σ-field on a set S is a set A of subsets of S that is closed under the operations
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of complementation, and countably infinite unions. A measure f is a function mapping any

element of the σ-field A to the positive real line which satisfies f(∅) = 0 and for every collection

A1, A2, ... of non-overlapping elements of A, f(∪∞i=0Ai) =
∑∞

i=0 f(Ai).

Suppose that β is a continuous random variable, and the space of β is S. Normally the

base measure f consists of the product of a scalar variable α, and a probability distribution φ0

on β [60]. The definition states that a random probability distribution φ on β is distributed

according to the Dirichlet process DP(αφ0) if for any partition (A1, A2, ..., Ak) of S, (φ(β ∈
A1), ..., φ(β ∈ AK)) ∼ Dirichlet(αφ0(A1), ..., αφ0(AK)).

In the case of a Dirichlet process mixture model, we assume that the observed data variable

X is generated according to a parametric distribution P (X|β). The parameter β is in turn

distributed according to a random distribution P (β|φ) = φ(β). The random distribution φ is

drawn from a Dirichlet process prior DP(αφ0).

Ferguson’s definition of the Dirichlet process is useful for establishing some important prop-

erties of the Dirichlet process. For example, suppose that we observe a set of draws β1, ..., βN−1

from φ. Let A1, ..., AK be any partition of the space S of β for any K. Let δβn
be a distribu-

tion concentrated at location βn. The posterior distribution of φ given β1, ..., βN−1 is shown in

equation 4.2.4, as derived by Ferguson [18, p. 217]. From the posterior distribution on φ we

can find the posterior distribution on βN+1 given the values of the previous draws as seen in

equation 4.2.5 [60, p. 3].

P (φ|α, φ0, β1, ..., βN−1) = DP(αφ0 +
N−1∑

n=1

δβn
) (4.2.4)

P (βN |α, φ0, β1, ..., βN−1) =
αφ0(βN )

N − 1 + α
+

∑N
n=1 δβn

(βN )

N − 1 + α
(4.2.5)

This last equation shows that when we draw a series of values for β from the Dirichlet process

prior, we may either draw a value equal to one of the previous draws, or draw a new value from

the base distribution φ0. Further, it can be shown that a draw φ from the Dirichlet process is

discrete with probability one [18, p. 219]. This means that φ consists of a countably infinite

collection of point masses in the space of β, and there is a non-zero probability of drawing the

same value β multiple times. In terms of the Dirichlet process mixture, this property implies

that a series of data points xn drawn from the DP mixture will tend to form clusters.

Suppose we introduce a set of indicator variables zn along with βn and xn. We begin by

setting z1 = 0. During sampling we set zn = zj if βn = βj , 1 < j < n. If βn is not equal to any

of β1, .., βn−1, we set zn to the next available value 1 + max(z1, ..., zn−1). The sampling process

on the indicator variables induced by the Dirichlet process is known as the Chinese Restaurant
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Process or CRP [2, p. 92]. The probability distribution of zN given the N −1 previous samples

can be obtained from equation 4.2.5.

If zj = zN = k for some j 6= N P (zN = k|α, z1, ..., zN−1) =

∑N−1
i=1 [zi = k]

N − 1 + α
(4.2.6)

P (zN 6= zj ∀ j 6= N |α, z1, ..., zN−1) =
α

N − 1 + α
(4.2.7)

Using the CRP, we can draw a sample of N data points from the Dirichlet process prior

in two stages. First we sample a partition of the data points from the CRP as represented by

the indicator variables zn. Let the partition consists of K clusters. Next, for each cluster k, a

single parameter vector βk is sampled from the base distribution φ0 for that cluster.

We can also use the definition of the CRP, and its relationship to the Dirichlet process, to

derive the joint distribution of a sample of indicator variables z1, ..., zN , as well as a sample of

parameter values β1, ..., βN . To simplify the notation suppose again that the partition has K

blocks or clusters. Let the unique values of z be zu(1), ..., zu(K), and the corresponding unique

values of β be βu(1), ..., βu(K). We introduce count variables ck to indicate the number of zn

equal to zu(k).

P (z1, ..., zN |α) = P (z1|α) · · ·P (zN |α, z1, ..., zN−1)

=

∏K
k=1 α

∏ck−1
i=1 i

∏N
n=1 n− 1 + α

=
αKΓ(α)

∏K
k=1 Γ(ck)

Γ(N + α)
(4.2.8)

P (β1, ..., βN |α, φ0) = P (β1|α, φ0) · · ·P (βN |α, φ0, β1, ..., βN−1)

=
αKΓ(α)

∏K
k=1 Γ(ck)

Γ(N + α)

K∏

k=1

φ0(βu(k)) (4.2.9)

It is clear from the form of equations 4.2.8 and 4.2.9 that the joint probability of the z’s

and the joint probability of the β’s are both independent of their ordering. This property is

called exchangeability. Under exchangeability we can assume that any element in the sampled

sequence is the last element, and thus use 4.2.6 or 4.2.5 to compute the conditional probabilities

needed for Gibbs sampling [2, p. 6].

4.2.2 Bayesian Inference and the Conjugate Gibbs Sampler

As we have seen, the Dirichlet Process provides a very flexible prior distribution for mixture

models. Unlike finite mixture models, the Dirichlet process mixture model can produce an

unlimited number of clusters as the amount of data increases. Conditioned on a fixed sample
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of data, the Dirichlet process mixture model is able to automatically adapt the number of

clusters. The Dirichlet process mixture model can better reflect uncertainty about the number

of components underlying the data, and eliminates the need to perform an explicit search for

a single, optimal number of components. In this section we derive a Gibbs sampler for the

Dirichlet process mixture model assuming conjugate priors [60, p. 4].

To complete our definition of the multinomial Dirichlet Process mixture model, we must

specify the base distribution φ0. A conjugate Gibbs sampler can be derived using an indepen-

dent product of Dirichlet distributions as the base distribution. Recall that this base distri-

bution is the same as the conjugate prior on mixture component parameters used in the finite

multinomial mixture model.

P (β|φ0) =
D∏

d=1

D(βd|φd0) (4.2.10)

The state of the Gibbs sampler consists of the mixture component indicators z1, ..., zN

and the parameters of the occupied mixture component distributions β1, ..., βK . Of course,

the mixture contains an infinite number of components, but we do not explicitly represent

components that have no data cases assigned to them. The number of occupied components K

changes as new components are occupied, and old components are abandoned.

We begin by deriving the posterior probability of the mixture indicator zn, given the re-

maining indicator variables z−n, and the observed data. This conditional distribution can be

derived from the Chinese Restaurant Process and the observed data likelihood obtained by

analytically summing over missing data under the missing at random assumption.

If zj = zn = k for some j 6= n P (zn = k|z−n,xn, β, α, φ0)

∝ P (zn = k|z−n, α)P (xn|rn, βk)

∝
∑N

i6=n[zi = k]

N − 1 + α

D∏

d=1

V∏

v=1

βvdk
[rdn=1][xdn=v] (4.2.11)

P (zn 6= zj ∀ j 6= n|z−n,xn, α, φ0) ∝ P (zn 6= zj∀ j 6= n|z−n, α)P (xn|rn, φ0)

∝ α

N − 1 + α

∫
P (xn|rn, β)P (β|φ0)dβ

∝ α

N − 1 + α

D∏

d=1

V∏

v=1

(
φvd0∑V

v=1 φvd0

)[rdn=1][xdn=v]

(4.2.12)

The probabilities in equations 4.2.11 and 4.2.12 have very intuitive interpretations. Equation

4.2.11 simply states that zn is assigned to a component k, and there exists another data case

j different from n that is also assigned to component k. The probability of this event depends
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on the number of data cases assigned to component k, and the probability of the observed data

xo
n under component k.

The event expressed in equation 4.2.12 as (zn 6= zj ∀ j 6= n) is the event that data case n is

assigned to a previously unoccupied component. The probability of this event depends only on

the concentration parameter α, and the marginal probability of xo
n under the base distribution.

Increasing the concentration parameter increases the prior probability of forming new clusters.

The marginal probability of assigning data case n to an unoccupied component is given by the

integral of P (xo
n|β) with respect to the base distribution. This integral is tractable when the

base distribution is conjugate to the parameter β. If a new component is created while updating

the zn, it is randomly initialized by sampling from the base distribution.

Once all of the data cases have been assigned to mixture components, the update for the

occupied component distribution parameters is identical to the finite mixture case. Here we

use the count variables cvdk =
∑N

n=1[zn = k][rdn = 1][xdn = v] to simplify the notation.

P (βvdk|z,x, φ0) ∝
N∏

n=1

P (xdn|βdk)P (βdk|φd0)

∝
N∏

n=1

V∏

v=1

βvdk
[rdn=1][xdn=v][zn=k] ·

V∏

v=1

βφvd0−1
vdk

= D(c1dk + φ1d0, ..., cV dk + φV d0) (4.2.13)

The conjugate Gibbs sampler for the multinomial/Dirichlet process mixture model alter-

nates between sequentially assigning each data case to a mixture component, creating new

components as needed, and updating the parameters associated with each occupied mixture

component.

4.2.3 Bayesian Inference and the Collapsed Gibbs Sampler

In this section we derive a collapsed Gibbs sampler for the multinomial Dirichlet Process mixture

model under the missing at random assumption. To form the collapsed Gibbs sampler we

analytically integrate the β parameters out of the model, leaving only the mixture indicators

[59, p. 4]. This integration is tractable in the conjugate multinomial/Dirichlet setting. The

primary advantage of the collapsed Gibbs sampler is that the size of the state of the underlying

Markov chain is greatly reduced. We give the Gibbs updates below. For convenience we

introduce the count variables c−n
k =

∑N
i6=n[zi = k] and c−n

vdk =
∑N

i6=n[zi = k][rdi = 1][xdi = v].

Note that the count variables must be recomputed after each Gibbs update.
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If zj = zn = k for some j 6= n P (zn = k|z−n,x, α, φ0)

∝ c−n
k

N − 1 + α

D∏

d=1

V∏

v=1

(
c−n
vdk + φvd0∑V

v=1 c
−n
vdk + φvd0

)[rdn=1][xdn=v]

(4.2.14)

P (zn 6= zj ∀j 6= n |z−n, xn, α, φ0) ∝
α

N − 1 + α

D∏

d=1

V∏

v=1

(
φvd0∑V

v=1 φvd0

)[rdn=1][xdn=v]

(4.2.15)

To run the collapsed Gibbs sampler we simply iterate through the data cases, updating each

mixture indicator in turn. A careful implementation where the count variable are cached and

updated instead of recomputed from scratch can lead to significant computational savings.

4.2.4 Predictive Distribution and the Conjugate Gibbs Sampler

Running the conjugate Gibbs sampler produces a set of samples zs
n, βs

k for each data case n and

each occupied mixture component k. Denote the number of occupied mixture components in

sample s by Ks. The posterior predictive distribution for data case n is obtained by averaging

the predictions made by the mixture component data case n belongs to in each sample s. Note

that we assume the data dimension d we make a prediction for is not one of the observed data

dimensions.

P (xdn = v|{xo
i , ri}i=1:N , φ0, α) =

1

S

S∑

s=1

Ks∑

k=1

[zs
n = k]βs

vdk (4.2.16)

If a data case is not included in the Dirichlet process mixture simulation, it is still possible to

make predictions for that data case. This is a useful procedure if we need to make predictions

for additional data cases and wish to avoid re-running a complete simulation. One method

to accomplish this is to convert each sample from the Dirichlet process mixture into a finite

mixture model with parameters θ̂ and β̂ as shown below. This procedure is closely related to

the finite mixture model approximations to the Dirichlet Process mixture model studied by

Ishwaran and Zarepour [41].

θ̂s
k =





∑N
n=1

[zn=k]
N+α ... k ≤ Ks

α
N+α ... k = Ks + 1

β̂s
vdk =





βs
vdk ... k ≤ Ks

φvd0∑V
v=1

φvd0

... k = Ks + 1
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To compute the predictive distribution for a novel data case x∗, we average the predictive

distribution under each of the finite mixture models as seen in Equation 4.2.17. The predictive

distribution within a single finite mixture model is computed according to Equation 4.1.15.

P (xd∗ = v|xo
∗, r∗, β, θ) =

1

S

S∑

s=1

Ks+1∑

k=1

β̂s
vdk

θ̂k
∏D

d=1

∏V
v=1 β̂

[rd∗=1][xd∗=v]
vdk∑K

k′=1 θ̂k′

∏D
d=1

∏V
v=1 β̂

[rd∗=1][xd∗=v]
vdk′

(4.2.17)

If our original simulation was based on a large number of data cases, the present approxima-

tion will be quite close to the predictive distribution obtain by including the novel data point

in the simulation. The reason is that a single data point can not have a large effect on either

the partitioning of the data points, or the sampling of the parameter values. If we use this

scheme to independently make predictions for a large number of novel data points, the results

may differ significantly from including all such novel data points in the simulation.

4.2.5 Predictive Distribution and the Collapsed Gibbs Sampler

Computing the predictive distribution for a training case using samples from the collapsed

Gibbs sampler requires additional steps. This is because the state of the collapsed Gibbs

sampler consists only of mixture indicator variables zn. The posterior distribution on βdk

for an occupied cluster with index k in sample s is Dirichlet, and its parameters are trivial

to compute given the training data and mixture indicators. We again use count variables

cvdk =
∑N

n=1[zn = k][rdn = 1][xdn = v].

P (βdk|{zs
n,xn, rn}n=1:N , φ0) = D(φ10 + c1dk, ..., φV 0 + cV dk) (4.2.18)

A particular value βs
k could be sampled from this posterior distribution in order to compute

the predictive distribution. However, this introduces unnecessary variance. A better option is

to set βs
k to the mean of the posterior. This is a form of Rao-Blackwellization in the sense of

Gelfand and Smith [24].

βs
vdk =

φv0 + cvdk∑V
v=1 φv0 + cvdk

(4.2.19)

The predictive distribution for training cases can now be calculated as seen in Equation

4.2.20. The predictive distribution for novel data cases can be found using the same approxi-

mation scheme as described for the conjugate Gibbs sampler in Equation 4.2.17.

P (xdn = v|{xo
i , ri}i=1:N , φ0, α) =

1

S

S∑

s=1

Ks∑

k=1

[zs
n = k]βs

vdk (4.2.20)
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4.3 Factor Analysis and Probabilistic Principal Components

Analysis

The generative process underlying factor analysis asserts that the observed data cases x1, ...,xN

are generated using a two step process. First, a continuous Q-dimensional latent vector tn is

sampled for each data case n from a zero-mean Gaussian with unit variance. Next, xn is sampled

from a D-dimensional Gaussian distribution with mean µ+ Λtn, and covariance matrix Ψ [73,

p. 612]. Λ is a D×Q matrix referred to as the factor loading matrix. Each dimension q of the

latent space is referred to as a factor.

The main feature of factor analysis is that the covariance matrix Ψ is constrained to be

diagonal. This means that conditioned on the latent vector tn, the dimensions of xn are

independent. We summarize the factor analysis model below.

P (tn) =
1

(2π)Q/2
exp(−1

2
tT
n tn) (4.3.1)

P (xn|tn,Λ,Ψ, µ) =
1

|2πΨ|1/2
exp(−1

2
(xn − µ− Λtn)T Ψ−1(xn − µ− Λtn)) (4.3.2)

Probabilistic principal components analysis is a linear Gaussian generative model for con-

tinuous data vectors [73]. The model asserts that each D dimensional observed data vector xn

is generated by first sampling a Q dimensional vector tn from a unit-variance, zero-mean Gaus-

sian distribution. The observed data vector xn is then sampled from a Gaussian distribution

with mean µ+ Λtn and covariance matrix σ2I. We summarize the probabilistic model below.

P (tn) =
1

(2π)Q/2
exp(−1

2
tT
n tn) (4.3.3)

P (xn|tn,Λ, σ, µ) =
1

(2πσ2)D/2
exp(− 1

2σ2
(xn − µ− Λtn)T (xn − µ− Λtn)) (4.3.4)

Probabilistic PCA is thus subsumed by factor analysis since the spherical covariance matrix

σ2I is a special case of the diagonal covariance matrix used in factor analysis. Fitting the two

models will, of course, lead to different latent factors, and different factor loading matrices.

It is insightful to compare the two models based on what data transformations each model is

invariant to. Probabilistic PCA is invariant to rotations of the observed data since the covari-

ance matrix is assumed to be spherical. By contrast, factor analysis is invariant to independent

scaling along different input dimensions since the covariance matrix is diagonal [73, p. 615].

Probabilistic principal components analysis is also closely related to classical principal com-
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ponents analysis. Classical PCA finds a linear projection from D dimensions to Q dimensions

that retains the maximum amount of variance [43]. Given a set of N data vectors x1, ...,xN in

D dimensions, the goal of PCA is to obtain a set of vectors t1, ..., tN in Q dimensions satisfying

the relationship tn = W (xn − x̄), where x̄ is the mean of the data vectors, and t1, ..., tN retain

the maximum amount of variance. The matrix W is called the projection matrix, and is of size

Q × D. The rows of W are constrained to be orthonormal. It can be shown that the matrix

W that yields the desired projection is given by the Q leading eigenvectors of the empirical

covariance matrix [73, p. 611].

Probabilistic PCA and classical PCA are related by the fact that classical PCA is the zero-

noise limit of probabilistic PCA. As a result, the optimal probabilistic PCA factor loading

matrix Λ is the transpose of classical PCA’s optimal W matrix, and can be found using eigen-

decomposition of the empirical covariance matrix if there is no missing data. The optimal factor

loading matrix in factor analysis can not be found in this way [73, p. 619]. For the remainder

of this section we develop the more general case of a diagonal covariance matrix Ψ.

4.3.1 Joint, Conditional, and Marginal Distributions

The joint probability of xn and tn is Gaussian. This means that all marginal and conditional

distributions are also Gaussian, and can be obtained from the joint distribution using standard

Gaussian marginalization and conditioning formulas. The parameters of the joint distribution

can be deduced from the Gaussian conditioning formula that computes P (xn|tn) from P (xn, tn).

P
(
[xn, tn]T |µ,Λ,Ψ

)
= N

([
µx

µt

]
,

[
Σxx Σxt

Σtx Σtt

])
= N

([
µ

0

]
,

[
Ψ + ΛΛT Λ

ΛT I

])
(4.3.5)

Both probabilistic PCA and factor analysis are similar to classical PCA in that they can

also be used for dimensionality reduction. Dimensionality reduction is achieved by inferring

the most likely latent vector tn for each observed data vector xn using Bayes rule. However,

unlike classical PCA, probabilistic PCA and factor analysis can infer latent factors vectors given

incomplete input vectors, assuming the missing at random condition holds. The posterior prob-

ability of tn given xn can be found by applying the Gaussian conditioning and marginalization

formulas to Equation 4.3.5.

P (tn|xo
n, µ,Λ,Ψ) = N (µtn|xo

n
,Σtn|xo

n
) (4.3.6)

µtn|xo
n

= ΛoT (Σoo
xx)−1(xo

n − µo)

Σtn|xo
n

= I − ΛoT (Σoo
xx)−1Λo
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Probabilistic PCA and factor analysis can also be thought of as providing a structured

approximation to the empirical covariance matrix. This view is obtained by integrating over

the unobserved latent vectors tn to obtain the marginal distribution on xn. This operation is

trivial given the joint distribution of xn and tn.

P (xn|Λ, σ, µ) = N (xn;µx,Σxx) = N (xn;µ,Ψ + ΛΛT )

The estimated covariance matrix Σxx = Ψ + ΛΛT can be used in place of the empirical

covariance matrix, and can result in significant savings in both computation time, and the

space required to store model parameters. The factor analysis model parameters Ψ, Λ, and

µ can be estimated using and expectation maximization algorithm as discussed in the next

section.

4.3.2 Maximum Likelihood Estimation

In this section we derive an expectation maximization algorithm for factor analysis and prob-

abilistic principal components analysis assuming the missing at random condition holds. The

maximum likelihood principle states that we should select the parameters µ, Λ, Ψ that have

the highest likelihood given the observed data. Two distinct maximum likelihood EM algo-

rithms can be obtained depending on whether the missing data is integrated out analytically

before forming the expected complete log likelihood, or treated along with the latent vectors tn

within the EM algorithm itself. Neither approach has a clear advantage. Solving the gradient

equations in the M-Step is significantly easier when EM is used to deal with the missing data;

however, the E-step is more difficult since joint expectations of missing data values and latent

variables are required.

Below, we derive an EM algorithm where the missing data is handled along with the latent

factors. This approach is closely related to the handling of missing data when learning a

full covariance Gaussian or mixture of full covariance Gaussians [27, 28]. The alternative EM

algorithm for factor analysis is given by Canny [11]. We begin by forming the complete log-

likelihood.

L(Λ,Ψ, µ|xn, tn) = logP (tn) + logP (xn|tn,Λ,Ψ, µ)

= −1

2
log(|2πΨ|)− 1

2
(xn − µ− Λtn)T Ψ−1(xn − µ− Λtn)

− Q

2
log(2π)− 1

2
tT
n tn (4.3.7)
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The E-step requires the conditional distribution of the unobserved variables tn and xm
n

given the observed variables xo
n. This distribution is obtained from the joint using the Gaussian

conditioning formula as seen below.

qn(t,xm) = P ([tn,x
m
n ]T |xo

n, µ,Λ,Ψ) = N



[
µtn|xo

n

µxm
n |xo

n

]
,


 Σtn|xo

n
Σtnxm

n |xo
n

ΣT
tnxm

n |xo
n

Σxm
n |xo

n




 (4.3.8)

µtn|xo
n

= ΛoT (Σoo
xx)−1(xo

n − µo) µxm
n |xo

n
= µm + Σmo

xx (Σoo
xx)−1(xo

n − µo)

Σtn|xo
n

= Σtt − Σo
tx(Σoo

xx)−1Σo
xt Σxm

n |xo
n

= Σmm
xx − Σmo

xx (Σoo
xx)−1Σom

xx

Σtnxm
n |xo

n
= Σm

tx − Σo
tx(Σoo

xx)−1Σom
xx

We form the expected complete log likelihood function using the posterior distribution

qn(t,xm), and the complete log likelihood function.

E[L(Λ,Ψ, µ|xn, tn, zn)] =
N∑

n=1

∫ ∫
qn(t,xm)(logP (tn) + logP (xn|tn,Λ,Ψ, µ))dxm

n dtn

=
N∑

n=1

−1

2
log(|2πΨ|)− 1

2
Eqn [(xn − µ− Λtn)T Ψ−1(xn − µ− Λtn)]

− Q

2
log(2π)− 1

2
Eqn [tT

n tn] (4.3.9)

We derive the maximum likelihood parameter estimates for µ, and Λ, which are identical for

both factor analysis and probabilistic PCA. We derive the update for both the diagonal factor

analysis covariance matrix Ψ, and the spherical probabilistic PCA covariance matrix σ2I. We

assume the missing at random condition holds throughout the derivation. We introduce the

notation Ad: to refer to the dth row vector of a matrix A. The element-wise definition of Ad: is

(Ad:)j = Adj .

∂E[L(Λ,Ψ, µ|xn, tn)]

∂µ
=

N∑

n=1

−2Ψ−1Eqn [xn] + 2Ψ−1ΛEqn [tn] + 2Ψ−1µ = 0

µ =
1

N

N∑

n=1

Eqn [xn]− ΛEqn [tn] (4.3.10)
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∂E[L(Λ, σ, µ|xn, tn)]

∂Λ
=

N∑

n=1

−2Ψ−1Eqn [(xn − µ)tT
n ] + 2Ψ−1ΛEqn [tnt

t
n]

Λ
N∑

n=1

Eqn [tnt
t
n] =

N∑

n=1

Eqn [xnt
T
n ]− µEqn [tT

n ]

Λ =

(
N∑

n=1

Eqn [xnt
T
n ]− µEqn [tn]T

)(
N∑

n=1

Eqn [tnt
T
n ]

)−1

(4.3.11)

∂E[L(Λ,Ψ, µ|xn, tn)]

∂Ψdd
=

N∑

n=1

− 1

2Ψdd
+

1

2Ψ2
dd

Eqn [(xdn − µd − Λd:tn)T (xdn − µd − Λd:tn)]

Ψdd =
1

N

N∑

n=1

Eqn [xnx
T
n ]dd + µ2

d + Λd:Eqn [tnt
T
n ]ΛT

d:

− 2µdEqn [xn]d − 2Λd:Eqn [xnt
T
n ]Td: + 2µdΛd:Eqn [tn] (4.3.12)

∂E[L(Λ, σ, µ|xn, tn)]

∂σ2
=

N∑

n=1

− 1

2σ2
+

1

2σ4
Eqn [(xn − µ− Λtn)T (xn − µ− Λtn)]

σ2 =
1

N

N∑

n=1

tr(Eqn [xnx
T
n ]) + µTµ+ tr(ΛT ΛEqn [tnt

T
n ])

− 2µTEqn [xn]− 2tr(ΛEqn [tnx
T
n ]) + 2µT ΛEqn [tn] (4.3.13)

The M-step updates can be expressed in terms of only five expectations derived from Equa-

tion 4.3.8. Namely, Eqn [xn] = [µxm
n |xo

n
,xo

n], Eqn [tn] = µtn|xo
n
, Eqn [tnt

T
n ] = Σtn|xo

n
+ µtn|xo

n
µT

tn|xo
n
,

as well as Eqn [xnx
T
n ] and Eqn [xnt

T
n ] shown below.

Eqn [xnx
T
n ] =


(Σxm

n |xo
n

+ µxm
n |xo

n
µT

xm
n |xo

n
) µxm

n |xo
n
(xo

n)T

xo
n(µxm

n |xo
n
)T xo

n(xo
n)T


 Eqn [xnt

T
n ] =


Σxm

n tn|xo
n

+ µxm
n |xo

n
µT

tn|xo
n

xo
nµ

T
tn|xo

n




4.3.3 Predictive Distribution

A learned factor analysis model can be used to calculate the posterior predictive distribution

on the missing data dimensions xm
n given the observed data dimension xo

n. The posterior

predictive distribution is Gaussian as seen in equation 4.3.14. The parameters are µxm
n |xo

n
=

µm + Σmo
xx (Σoo

xx)−1(xo
n − µo), Σxm

n |xo
n

= Σmm
xx − Σmo

xx (Σoo
xx)−1Σom

xx , and Σxx = Ψ + ΛΛT .

P (xm
n |xo

n,Λ, µ,Ψ) = N (µxm
n |xo

n
,Σxm

n |xo
n
) (4.3.14)
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4.4 Mixtures of Factor Analyzers

A mixture of factor analyzers is a finite mixture model where the mixture component distribu-

tions are factor analysis models [37, 26, 45, 74]. The generative process for the mixture of factor

analyzers starts by selecting one of the K factor analysis models in the mixture according to

the discrete probability distribution P (zn = k) = θk. Once a mixture component is selected,

the generative process is identical to the generative process in a single factor analysis model. A

low dimensional latent vector tn is sampled from a zero mean, unit variance Gaussian distribu-

tion. A data case xn is then sampled according to a Gaussian distribution with mean given by

µk +Λktn, and covariance matrix is given by Ψk. We summarize the mixture of factor analyzers

model below.

P (zn = k) = θk (4.4.1)

P (tn) =
1

(2π)Q/2
exp(−1

2
tT
n tn) (4.4.2)

P (xn|zn = k, tn,Λ,Ψ, µ) =
1

|2πΨk|1/2
exp(−1

2
(xn − µk − Λktn)T Ψ−1

k (xn − µk − Λktn))

(4.4.3)

4.4.1 Joint, Conditional, and Marginal Distributions

The joint probability of xn and tn given zn = k is Gaussian as in a single factor analysis model.

We give this probability in Equation 4.4.4.

P
(
[xn, tn]T |zn = k, µ,Λ,Ψ

)
= N

([
µxk

µt

]
,

[
Σxxk Σxtk

Σtxk Σttk

])
= N

([
µk

0

]
,

[
Ψk + ΛkΛ

T
k Λk

ΛT
k I

])

(4.4.4)

The probability of a data case xn given a choice of mixture component zn = k is obtained

by marginalizing over tn with zn fixed.

P (xn|zn = k,Λ, σ, µ) = N (xn;µxk,Σxxk) = N (xn;µk,Ψk + ΛkΛ
T
k )

4.4.2 Maximum Likelihood Estimation

The parameters of the mixture of factor analyzers model are found using an Expectation Max-

imization algorithm. The E-step for the mixture of factor analyzers first computes the prob-

ability that each data case belongs to each mixture component. The remainder of the E-step
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consists of estimating expectations within each component model. The computation within

each component model is identical to the E-step in a single factor analysis model. The M-step

in the mixture of factor analyzers model updates the parameters of each component model

according to that component’s responsibility for each data case.

Below, we derive an EM algorithm where the missing data is handled along with the latent

factors, and mixture indicators. The derivation for mixtures of factor analyzers with missing

data is closely related to the derivation for mixtures of factor analyzers with complete data [26],

as well as the derivation of full covariance mixtures of Gaussians with missing data [28]. We

begin by forming the complete log-likelihood.

L(Λ,Ψ, µ, θ|xn, tn, zn) =
K∑

k=1

[zn = k](logP (zn = k|θ) + logP (tn) + logP (xn|tn,Λk,Ψk, µk))

=
K∑

k=1

[zn = k]

(
−1

2
(xn − µk − Λktn)T Ψ−1

k (xn − µk − Λktn)

+ log θk −
1

2
log(|2πΨk|)−

Q

2
log(2π)− 1

2
tT
n tn

)
(4.4.5)

The E-step requires the distribution of the unobserved variables zn, tn and xm
n given the

observed variables xo
n. This distribution can be factorized as seen in Equation 4.4.6.

qn(tn,x
m
n , zn) = P (tn,x

m
n |zn,xo

n, µ,Λ,Ψ)P (zn|xo
n, µ,Λ,Ψ, θ) (4.4.6)

= qnzn(tn,x
m
n )qn(zn)

qn(k) ∝ θk
1

|2π(Ψo
k + Λo

kΛ
oT
k )| exp(−1

2
(xo

n − µo
k)

T (Ψo
k + Λo

kΛ
oT
k )−1(xo

n − µo
k))

qnk(tn,x
m
n ) = N



[
µtn|xo

nk

µxm
n |xo

nk

]
,


 Σtn|xo

nk Σtnxm
n |xo

nk

ΣT
tnxm

n |xo
nk Σxm

n |xo
nk






The parameters of the normal distribution specified by qnk(tn,x
m
n ) are given below.

µtn|xo
nk = ΛoT

k (Σoo
xxk)

−1(xo
n − µo

k) µxm
n |xo

nk = µm
k + Σmo

xxk(Σ
oo
xxk)

−1(xo
n − µo

k)

Σtn|xo
nk = Σtt − Σo

txk(Σ
oo
xxk)

−1Σo
xtk Σxm

n |xo
nk = Σmm

xxk − Σmo
xxk(Σ

oo
xxk)

−1Σom
xxk

Σtnxm
n |xo

nk = Σm
txk − Σo

txk(Σ
oo
xxk)

−1Σom
xxk

We form the expected complete log likelihood function using the posterior distribution

qn(zn)qnzn(t,xm), and the complete log likelihood function.
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E[L(Λ,Ψ, µ, θ|x, t, z)] =
N∑

n=1

K∑

zn=1

∫ ∫
qn(zn)qnzn(t,xm)L(Λ,Ψ, µ, θ|xn, tn, zn)dxm

n dtn

=
N∑

n=1

K∑

k=1

Eqn [zn = k]

(
−1

2
Eqnk

[(xn − µk − Λktn)T Ψ−1
k (xn − µk − Λktn)]

+ log θk −
1

2
log(|2πΨk|)−

Q

2
log(2π)− 1

2
Eqnk

[tT
n tn]

)
(4.4.7)

We give the maximum likelihood updates for θ, µ, Λ, and Ψ below. The derivation for θ is

identical to the general finite mixture case. The derivations for µ, Λ, and Ψ are the same as for

a single factor analysis model, except that each data case is weighted by the factor qn(k).

θk =

∑N
n=1 qn(k)

N
(4.4.8)

µk =
1

∑N
n=1 qn(k)

N∑

n=1

qn(k)(Eqnk
[xn]− ΛkEqnk

[tn]) (4.4.9)

Λk =

(
N∑

n=1

qn(k)(Eqnk
[xnt

T
n ]− µkEqnk

[tn]T )

)(
N∑

n=1

qn(k)Eqnk
[tnt

T
n ]

)−1

(4.4.10)

Ψdd =
1

∑N
n=1 qn(k)

N∑

n=1

qn(k)
(
Eqnk

[xnx
T
n ]dd + µ2

dk + Λd:kEqnk
[tnt

T
n ]ΛT

d:k

−2µdkEqnk
[xn]d − 2Λd:kEqnk

[xnt
T
n ]Td: + 2µdkΛd:kEqnk

[tn]
)

(4.4.11)

σ2 =
1

∑N
n=1 qn(k)

N∑

n=1

qn(k)
(
tr(Eqnk

[xnx
T
n ]) + µT

k µk + tr(ΛT
k ΛkEqnk

[tnt
T
n ])

−2µT
kEqnk

[xn]− 2tr(ΛEqnk
[tnx

T
n ]) + 2µT

k ΛkEqn [tn]
)

(4.4.12)

The M-step updates can again be expressed in terms of only five expectations. Namely,

Eqnk
[xn], Eqnk

[tn], Eqnk
[xnx

T
n ], Eqnk

[tnt
T
n ], and Eqnk

[xnt
T
n ]. These expectations can be derived

from Equation 4.4.6 as shown below.

Eqnk
[tn] = µtn|xo

nk Eqnk
[xn] = [µxm

n |xo
nk,x

o
n] Eqnk

[tnt
T
n ] = Σtn|xo

nk + µtn|xo
nkµ

T
tn|xo

nk
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Eqnk
[xnx

T
n ] =


(Σxm

n |xo
nk + µxm

n |xo
nkµ

T
xm

n |xo
nk) µxm

n |xo
nk(x

o
n)T

xo
n(µxm

n |xo
nk)

T xo
n(xo

n)T




Eqnk
[xnt

T
n ] =


Σxm

n tn|xo
nk + µxm

n |xo
nkµ

T
tn|xo

nk

xo
nµ

T
tn|xo

nk




4.4.3 Predictive Distribution

A learned mixture of factor analyzers model can be used to calculate the posterior predictive

distribution of the missing data dimensions xm
n given the observed data dimensions xo

n. The

posterior predictive distribution is a mixture Gaussians, and can be computed in two steps

as seen in Equation 4.4.13 where µxm
n |xo

nk = µm
k + Σmo

xxk(Σ
oo
xxk)

−1(xo
n − µo

k), Σxm
n |xo

nk = Σmm
xxk −

Σmo
xxk(Σ

oo
xxk)

−1Σom
xxk, and Σxxk = Ψk + ΛkΛ

T
k .

P (xm
n |xo

n,Λ, µ,Ψ) =

K∑

k=1

qn(k)N (µxm
n |xo

nk,Σxm
n |xo

nk) (4.4.13)

qn(k) ∝ θk
1

|2πΣoo
xxk|

exp(−1

2
(xo

n − µo
k)

T (Σoo
xxk)

−1(xo
n − µo

k))



Chapter 5

Unsupervised Learning with

Non-Random Missing Data

This chapter presents work on unsupervised learning with non-random missing data. We use

collaborative prediction as a motivating example throughout this chapter. In a typical collab-

orative filtering system users assign ratings to items, and the system uses information from

all users to recommend previously unseen items that each user might like or find useful. One

approach to recommendation is to predict the ratings for all unrated items, and then recom-

mend the items with the highest predicted ratings. Collaborative filtering research has focused

almost exclusively on developing new models and new learning procedures to improve rating

prediction performance [16, 30, 33, 39, 52].

A critical assumption behind both learning methods and testing procedures is that the

missing ratings are missing at random. As discussed in Section 3.1, one way to violate the

missing at random condition is for the value of a variable to affect the probability that the

variable is missing. In the collaborative filtering setting this translates into the statement that

the rating value for a particular item affects the probability that the rating value will be missing.

In an internet based movie recommendation system, for example, users may be less likely to

enter ratings for movies they do not like since they avoid seeing such movies in the first place.

This would create a systematic bias towards observing ratings with higher values.

As discussed in Section 3.3, the presence of non-random missing data can introduce a

systematic bias into the learned parameters of parametric and semi-parametric models such

as mixture models [9], matrix factorization models [16], and other specialized probabilistic

models [52]. It is important to note that the presence of non-random missing data introduces

a complementary bias into the standard testing procedure for rating prediction experiments [9]

[33] [52, p.90]. Models are typically learned on one subset of the observed data, and tested on a

different subset of the observed data. If the distribution of the observed data is different from

46
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the distribution of the complete data for any reason, the estimated error on observed test data

can be an arbitrarily poor estimate of the error on the complete data. Marlin, Roweis, and

Zemel confirm this using experiments on synthetic data [54].

In this chapter we begin by describing an online user study and rating data collection

experiment based on Yahoo! Music’s LaunchCast internet radio service. The data collection

experiment was designed to gather information about how users choose which items they rate.

The initial empirical work performed by Marlin et al. used a proprietary data set derived from

this data collection experiment [53]. This work uses a slightly different data set that is publicly

available through the Yahoo! Research Alliance Webscope data sharing program under the

name ydata-ymusic-rating-study-v1 0.

We present an analysis of this new data set, which includes survey responses, and ratings

for randomly chosen songs. We describe methods for learning and prediction with non-random

missing data based on Bayesian mixture models, Dirichlet Process mixture models, and re-

stricted Boltzmann machines. We introduce a new experimental protocol for rating prediction

based on training models using user-selected items, and testing models using randomly selected

items. Experimental results show that incorporating a simple, explicit model of the missing

data mechanism can lead to significant improvements in prediction error as well as rank loss

compared to. Experiments are performed both on data from the Yahoo! LaunchCast study,

and synthetic data based on the Jester data set [30].

5.1 The Yahoo! Music Data Set

To properly assess the impact of the missing at random assumption on rating prediction, we

require a test set consisting of ratings that are a random sample of the ratings contained in the

complete data matrix for a given set of users. In this section we describe a study conducted in

conjunction with Yahoo! Music’s LaunchCast Radio service to collect such a data set.

LaunchCast radio is a free, customizable streaming music service where users can influence

the music played on their personal station by supplying ratings for songs. The LaunchCast

Radio player interface allows the user enter a rating for the currently playing song using a five

point scale. Users can also enter ratings for artists and albums.

Data was collected from LaunchCast Radio users between August 22, 2006 and September

12, 2006. Users based in the US were able to join the study by clicking on a link in the

LaunchCast player. Both the survey responses and rating data were collected through the

study’s web site. A total of 35, 786 users participated in the study. The results reported in

this paper are based on a random subset of 5400 survey participants and 10, 000 non-survey

participants who had at least 10 existing ratings in the LaunchCast rating database.
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Rating Frequency
Preference Level

Hate it Don’t like it Neutral Like it Love it

Never 6.76% 4.69% 2.33% 0.11% 0.07%

Very Infrequently 1.59% 4.17% 9.46% 0.54% 0.35%

Infrequently 1.63% 4.44% 24.87% 1.48% 0.20%

Often 12.46% 22.50% 26.83% 25.30% 5.46%

Very Often 77.56% 64.20% 36.50% 72.57% 93.91%

Hate it Don’t like it Neutral Like it Love it
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Figure 5.1: Yahoo! LaunchCast users were asked to report the frequency with which they choose
to rate a song given their preference for that song. The data above show the distribution over
rating frequencies given several preference levels. Users could select only one rating frequency
per preference level.

5.1.1 User Survey

The first part of the study consisted of a user survey. The questions relevant to this work asked

users to report on how their preferences affect which songs they choose to rate. The question

was broken down by asking users to estimate how often they rate a song given the degree to

which they like it. The results are summarized in the table and accompanying chart shown in

Figure 5.1. Each column in the table gives the results for a single survey question. For example,

the column labeled “neutral” corresponds to the question “If I hear a song I feel neutral about I

choose to rate it:” with the possible answers being “never”, “very infrequently”, “infrequently”,

“often”, and “very often”.

The results indicate that the choice to rate a song does depend on the user’s opinion of

that song. Most users tend to rate songs that they love more often than songs they feel neutral

about, and somewhat more often than songs that they hate. Users were also directly asked if

they thought their preferences for a song do not affect whether they choose to rate it. 64.85%

of users responded that their preferences do affect their choice to rate a song. By contrast, the

missing at random assumption requires that the underlying ratings not influence a user’s choice

to rate a song.
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(d) NetFlix Rating
Distribution

Figure 5.2: Distribution of rating values in the Yahoo! survey set and base set compared to
several popular collaborative filtering data sets including EachMovie, and Netflix.

5.1.2 Rating Data Analysis

Following the survey, users were presented with a set of ten songs to rate. The artist name

and song title were given for each song, along with a thirty second audio clip, which the user

could play before entering a rating. Ratings were entered on the standard five point scale used

by Yahoo! Music. The set of ten songs presented to each user was chosen at random without

replacement from a fixed set of 1000 songs. The fixed set of 1000 songs used in the survey were

chosen at random from all the songs in the LaunchCast play list having at least 500 existing

ratings in the LaunchCast rating database.

We refer to ratings collected during the survey as “survey ratings.” In addition, each survey

participant’s existing ratings on the set of 1000 survey songs was extracted from the LaunchCast

database. We refer to these existing ratings as the “base ratings.” The survey ratings represent

ratings for a random sample of songs, while the base ratings represent ratings for songs the

survey participant chose to enter.

Figures 5.2(a) and 5.2(b) show the empirical distribution of survey ratings and base ratings

for the 5400 survey participants. These figures show a dramatic difference between the two

distributions. The number of four and five star rating values is many times lower in the

survey set than the base set. The difference between the survey and base distributions is not

surprising given that users can influence the LaunchCast system to play songs reflecting their

preferences. Figures 5.2(c) and 5.2(d) give the rating distributions for EachMovie, and Netflix.

These distributions show a much higher proportion of high rating values than are present in

the random sample we collected during the survey.

To further analyze the difference between the base ratings and the survey ratings, we com-

puted the rating distribution separately for each item. For a particular item d let P S(Xd = v)

be the empirical probability of rating value v in the survey set, and PB(Xd = v) be the empirical

probability of rating value v in the base set. We smooth the empirical probabilities by one count
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(a) Histogram of number of songs
vs symmetrised KL divergence.
The median value is 0.8750.
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(b) Survey marginal distribution
for song 411 with symmetrised KL
divergence 0.8749.
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(c) Base marginal distribution for
song 411 with symmetrised KL di-
vergence 0.8749.

Figure 5.3: Figures (a) to (c) give an indication of the distribution of differences between survey
and base marginal distributions for each song.

per rating value to avoid zeros. We use the symmetrised Kullback−Leibler divergence (SKL)

shown in Equation 5.1.1 to measure the difference between the P S(Xd = v) and PB(Xd = v)

distributions for each item d.

SKLd =
V∑

v=1

PS(Xd = v) log

(
PS(Xd = v)

PB(Xd = v)

)
+ PB(Xd = v) log

(
PB(Xd = v)

PS(Xd = v)

)
(5.1.1)

Figure 5.3(a) shows a histogram of the symmetrised Kullback−Leibler divergence values.

The thick vertical line in the plot indicates the median SKL value of 0.8750 bits. Song 411

has an SKL value of 0.8749 bits, the largest SKL value less than the median. Figures 5.3(b)

and 5.3(c) illustrate the marginal rating distributions for song 411. These distributions are

qualitatively quite different, and half of the songs in the survey set exhibit a more extreme

difference according to the SKL measure.

A pertinent question is whether users’ ratings reported during the survey were consistent

with ratings recorded during normal use of the LaunchCast system. Marlin et al. showed very

good agreement on the approximately 1700 instances where the same user rated the same item

both during normal use of the LaunchCast system, and during the survey [53]. This comparison

was based on the complete set of 35, 786 survey participants.

It is important to note that the observed discrepancy between the survey set marginal

distributions and the base set marginal distributions is not conclusive evidence that the missing

data in the base set is NMAR. This is due to the fact that the MAR assumption can hold for

the true underlying generative process, while inference for parameters of a simpler model can

still be biased as discussed in Section 3.4. Nevertheless, we believe that the results of this
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analysis combined with the results of the user survey provide compelling evidence against the

MAR assumption.

5.1.3 Experimental Protocols for Rating Prediction

The rating data set used in the experiments is based on the 1000 survey songs and a set of 15, 400

users. The set of 15, 400 users consists of a random selection of 10, 000 non-survey participants

with at least 10 existing ratings on the set of 1000 survey songs, and a random selection of 5400

survey participants with at least 10 existing ratings on the set of 1000 survey songs. We chose to

enforce a minimum number of existing ratings per user so that rating prediction methods would

have at least 10 observations on which to base predictions. Non-survey users were included to

provide more training data to the learning methods.

In this work we follow an experimental protocol based on a five fold cross validation as-

sessment of both the weak and strong generalization performance of rating prediction methods

[52, p. 14]. We consider the prediction of ratings for both user-selected and randomly selected

songs. Preparing the data set for this empirical protocol involves several steps. We begin by

randomly partitioning the 5400 survey users into five blocks of 1080 users each. Each block

is used as a set of test users in turn. The ratings for the test users are further divided into

observed ratings, test ratings for user selected items, and test ratings for randomly selected

items. The observed ratings consist of all but one of the user selected ratings for each user.

The test ratings for user selected items consist of exactly one rating for a user selected item per

user. The observed ratings consist of the remaining user selected ratings for each user. The

test ratings for randomly selected items consist of the 10 ratings for randomly selected items

collected for each user during the survey. Any overlapping ratings in the user selected and

randomly selected sets were removed from the user selected set before the Yahoo! data was

publicly released. Note that these ratings should have been preserved in both rating sets, but

the effect of removing them from the user selected set is small.

Of the 4320 survey users from the remaining four blocks, 400 users are selected at random to

form a hold out set. The set of training users consists of the remaining 3920 survey users, and all

of the 10, 000 non-survey users. The training user ratings are divided into observed ratings, test

ratings for user selected items, and test ratings for randomly selected items. The survey users in

the training set have one test rating for a user selected item, and 10 test ratings for randomly

selected items. The non-survey users have one test rating for a user selected item, and no

test ratings for randomly selected items. Each set of training users has approximately 250, 000

observed ratings, while each set of test users has approximately 25, 000 observed ratings.

Unless otherwise specified, models are trained using the training users’ observed ratings. We

use normalized mean absolute error as the error measure for collaborative prediction [52, p. 15].
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Given a predictive distribution over the V rating values, we predict the median rating value.

The weak generalization error for user-selected items is computed by predicting the value of each

training user’s user-selected test items. The weak generalization error for randomly selected

items is computed by predicting the value of each training user’s randomly-selected test items.

The strong generalization error for user-selected items is computed by predicting the value of

each test user’s user-selected test items. The strong generalization error for randomly selected

items is computed by predicting the value of each test user’s randomly-selected test items.

The novel aspect of this protocol stems from the division of the rating data into three sets

of ratings. The observed ratings for each user are ratings for user-selected items. Thus, the user

selected test items come from the same distribution as the observed ratings, and both rating sets

are subject to the same unknown missing data mechanism. The ratings for randomly selected

test items come from a known selection mechanism where missing data is missing completely

at random.

If missing data is missing at random in the user selected items, we would not expect to see

a large difference in prediction performance on the randomly selected and user selected test

items. If missing data is not missing at random, we would expect methods that incorrectly

assume the MAR condition to perform poorly on the randomly selected test items compared

to the user-selected test items.

5.2 The Jester Data Set

The Jester recommender system was established as part of a research project on collaborative

filtering methods [30]. The system allows a user to rate jokes, and then recommends other

jokes the user might like. Jester is unique among the available collaborative filtering data sets

in that it contains a dense subset of ten items that all users were required to rate upon joining

the system. We extracted 15000 completely observed ratings vectors from the Jester gauge

set. Each rating vector consists of ratings for all ten of the gauge set items. The ratings were

mapped from the original continuous rating scale to 5 discrete rating values.

5.2.1 Experimental Protocols for Rating Prediction

Artificial missing data was added to the Jester data set using a synthetic missing data mech-

anism. The missing data model we use has the form P (rdn = 1|xdn = v, µv(s)) = µv(s). The

function µv(s) = s(v − 3) + 0.5. As s increases from 0 to 0.25, high rating values have an

increasing chance of being observed, and low rating values have an increasing chance of being

missing. We applied this missing data mechanism to the Jester ratings using the five sets of

missing data model parameters pictured in Figure 5.4, and obtained five data sets with artifi-
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Figure 5.4: Selection probabilities for the effect µv(s) = s(v−3)+0.5. The parameter s controls
the strength of the missing data effect. Here we show µv(s) at five equally spaced values on
the interval 0 ≤ s ≤ 0.250. These are the parameter sets used to create artificial non-random
missing data in the Jester data set.

cial non-random missing data. The ratings selected by our synthetic non-random missing data

mechanism simulate the ratings for user selected items in the Yahoo! data set. To simulate the

ratings for randomly selected items, we also selected one item at random for each user from the

set of 10 items in the base data.

As in the Yahoo! data set, the experimental protocol used to evaluate predictions on the

Jester data set is based on a five fold cross validation assessment of both strong and weak

generalization performance on test ratings from the simulated user selection process, and test

ratings from the simulated random selection process. As in the Yahoo! data set we split the

available users into test users, training users, and hold out users. We use a test set of 3000 users,

a training set of 10, 000 users, and a hold out set of 2000 users. Within the training and test sets

we select one simulated user selected item to act as the user selected test item. The simulated

randomly selected test item is removed from the remaining user selected items if required.

However, we retain the fact that the randomly selected test item was originally observed in this

case. The remaining user selected items form the observed ratings. We apply the same training

and testing procedures as described for the Yahoo! data set resulting in estimates of weak

generalization error on user selected items, weak generalization error on randomly selected

items, strong generalization error on user-selected items, and strong generalization error on

randomly-selected items.

The main benefit of using synthetic missing data is that we can study the behaviour of

models when the missing data has different properties. At s = 0 in the synthetic missing data

mechanism, the observation probabilities are the same for each rating value so the missing data

is missing at random. In this case we would expect methods that ignore the missing data

mechanism, and methods that model the missing data mechanism to give similar performance.

As s increases, models that ignore the missing data mechanism will be increasingly mislead

about the true underlying data distribution.
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5.3 Test Items and Additional Notation for Missing Data

The act of removing user selected items from the training data to use as test items effectively

introduces an additional source of missing data. Missing training data that results from held

out test items must be treated differently than the missing data that results from the natural

missing data process. For example, suppose item d was originally selected and rated by user n.

The training data would contain rdn = 1 and xdn = v. Now suppose that item d is chosen as a

test item for user n. We must remove the value xdn = v from the training data. However, it is

not correct to set rdn = 0 in the training data since user n originally selected item d.

Keeping track of the two sources of missing data in the training data requires the use of

additional notation. We define rdn = 1 to mean that user n originally selected and rated item

d. We define adn = 1 to mean that the rating value xdn is available for use during training or

inference. If rdn = 1 and adn = 1 this implies that user n originally selected and rated item d,

and that the rating for item d is available during training and inference. This is the normal

situation during learning. If rdn = 1 and adn = 0 this implies that user n originally selected

and rated item d, but the rating for item d is not available during training or inference. This

situation occurs when xdn is removed from the training set because item d is used as a test

rating. If rdn = 0 and adn = 1 this implies that user n originally did not select and rate item d,

but the rating for item d is available. This situation generally arises when we predict the value

of a randomly selected test item. It also occurs in some of the specialized training procedures

we consider. Finally, rdn = 0 and adn = 0 implies that item d was not originally selected and

rated by user n, and that the rating value is not available for learning.

5.4 The Finite Mixture/CPT-v Model

The CPT-v missing data model was proposed by Marlin, Roweis, and Zemel as a highly simpli-

fied non-random missing data model for collaborative filtering [54]. The CPT-v missing data

model captures the intuition that a user’s preference for an item affects whether they choose

to rate that item or not. The model assumes that the choice to rate each item is independent,

and the probability of rating a single item, given the user’s rating for the item is v, is Bernoulli

distributed with parameter µv. Marlin et al. combine the CPT-v missing data model with a

finite mixture data model [54, 53]. Figure 5.5 shows a graphical representation of the CPT-v

missing data model combined with the finite multinomial mixture data model. We give the

corresponding probabilistic model in equations 5.4.1 to 5.4.6.
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Figure 5.5: Bayesian network for the Bayesian mixture/CPT-v model combination.

P (θ|α) = D(θ|α) (5.4.1)

P (β|φ) =
K∏

k=1

D∏

d=1

D(βdk|φdk) (5.4.2)

P (µ|ξ) =
∏

v

B(µv|ξv) (5.4.3)

P (Zn = k|θ) = θk (5.4.4)

P (X = xn|Zn = k, β) =
D∏

d=1

V∏

v=1

β
[xdn=v]
vdk (5.4.5)

P (R = rn|X = xn, µ) =
D∏

d=1

V∏

v=1

µ[rdn=1][xdn=v]
v (1− µv)

[rdn=0][xim=v] (5.4.6)

The Beta prior P (µ|ξ) is the conjugate prior for the Bernoulli parameters µv. We give the

form of the Beta prior distribution in Equation 5.4.7.

B(µv|ξv) =
Γ(ξ0v + ξ1v)

Γ(ξ0v)Γ(ξ1v)
µξ1v−1

v (1− µv)
ξ0v−1 (5.4.7)

Equation 5.4.8 gives the complete data likelihood assuming the values of mixture indicator

zn and missing rating values xm
n are known. Computing the observed data likelihood involves

summing out over all joint configurations of the missing rating values xm
n . This sum has a

number of terms that is exponential in the number of missing data values. The independence

structure of the finite mixture/CPT-v model combination allows this sum to be computed
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efficiently as seen in Equation 5.4.9. Unlike the missing at random case, both the missing

rating values and response indicators contribute to the likelihood.

P (zn,xn, rn|β, θ, µ) =

K∏

k=1

(
θk

D∏

d=1

V∏

v=1

(
µ[rdn=1]

v (1− µv)
[rdn=0]βvdk

)[xdn=v]
)[zn=k]

(5.4.8)

P (xo
n, rn|β, θ, µ) =

∑

xm

K∑

k=1

θk

D∏

d=1

V∏

v=1

(
µ[rdn=1]

v (1− µv)
[rdn=0]βvdk

)

=
K∑

k=1

θk

(
D∏

d=1

V∏

v=1

(µvβvdk)
[rdn=1][xdn=v]

)




V∑

xm
1

=1

· · ·
V∑

xm
D

=1

D∏

d=1

V∏

v=1

((1− µv)βvdk)
[rdn=0][xm

d
=v]




=
K∑

k=1

θk

(
D∏

d=1

V∏

v=1

(µvβvdk)
[rdn=1][xdn=v]

)(
D∏

d=1

V∑

v=1

((1− µv)βvdk)
[rdn=0]

)

=
K∑

k=1

θk

D∏

d=1

(
V∏

v=1

(µvβvdk)
[xdn=v])

)[rdn=1]( V∑

v=1

(1− µv)βvdk

)[rdn=0]

(5.4.9)

5.4.1 Conditional Identifiability

The CPT-v missing data model has the interesting property that its parameters are condition-

ally identifiable even when the multinomial mixture model parameters are not identifiable. The

proof builds on the work of Glonek, who studied the problem of non-random missing data for

a single binary variable in the classification setting [29]. We first review Glonek’s proof, and

then extend the proof method to the CPT-v missing data mechanism.

Binary Classification with Non-Random Missing Labels

Consider a binary classification task with fully observed binary predictors x, and a single

binary class variable y subject to nonignorable nonresponse. The data model is a conditional

model parameterized by πx = P (Y = 1|X = x), while the selection model is parameterized by

µy = P (R = 1|Y = y) where R is a binary response indicator. Thus, the model consists of the

predictor or feature variables X, the binary class variable Y , and the binary response indicator

variable R.

Glonek defines the variable w to be categorical with values from the set {0, 1,∅} where ∅

indicates that the value of y was not observed [29]. Thus, the single variable w replaces the

combination of variables y, and r. Note that regardless of the data and selection models in

question, all that is ever observed in the data are the values of the random variables w, and the
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predictors x. We can now define the distribution over the observed variables φwx = P (W =

w|X = x).

A necessary condition for identifiability is that the number of degrees of freedom in the

observed variable distributions exceed the number of degrees of freedom in the model parame-

ters. If the total number of different configurations of the predictor variables x is M , then the

number of degrees of freedom in the observed variable distributions will be 2M since w is a

three-valued variable with the constraint that the values sum to one. The number of degrees

of freedom in the model parameters will be M + 2, and the condition is satisfied if M ≥ 2.

Glonek formulates a precise characterization of global identifiability, which we now recount.

Suppose we have at least two distinct settings of the predictor variables, and for two particular

settings of the predictor variables x1 and x2 we have πx1
6= πx2

. We relate the observed

distributions to the model parameters as follows:

φ0x1
= µ0(1− πx1

) φ1x1
= µ1(πx1

) φ0x2
= µ0(1− πx2

) φ1x2
= µ1(πx2

)

Noting that φ0x1
/µ0+φ1x1

/µ1 = (1−πx1
)+πx1

= 1 and φ0x2
/µ0+φ1x2

/µ1 = (1−πx2
)+πx2

=

1 we can reduce the above set of equations to the following linear system for 1/µ0 and 1/µ1.

[
φ0x1

φ1x1

φ0x2
φ1x2

][
1
µ0

1
µ1

]
=

[
1

1

]
(5.4.10)

Subject to the conditions πx1
6= πx2

and µ0, µ1 > 0, the above matrix is invertible. As a

result, the above system has a unique solution for µ0, µ1, and all of the π′s.

CPT-v and Conditional Identifiability

In the collaborative filtering case the observed variables are denoted wd, and take values on the

extended set {1, ..., V,∅} where ∅ again denotes the observation that xd is missing. Thus wd

replaces xd and rd. We denote the parameters of the joint distribution of the observed variables

by φw. This distribution has V D − 1 free parameters. We relate the parameters of the joint

distribution to the parameters of the model distribution as seen in Equation 5.4.11.

φw =

K∑

k=1

θk

D∏

d=1

(
V∏

v=1

(µvβvdk)
[wd=v]

)[wd 6=∅]( V∑

v=1

(1− µv)βvdk

)[wd=∅]

(5.4.11)

Before describing the general case, we consider a specific instance where V = 2, D = 2,K =

2. We list the φ functions for several configuration of the observed variables.
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φ11 =
K∑

k=1

θkµ1β11kµ1β12k φ21 =
K∑

k=1

θkµ2β21kµ1β12k

φ12 =
K∑

k=1

θkµ1β11kµ2β22k φ22 =
K∑

k=1

θkµ2β21kµ2β22k

φ1∅ =
K∑

k=1

θkµ1β11k(
V∑

v=1

(1− µv)βv2k) φ2∅ =
K∑

k=1

θkµ2β21k(
V∑

v=1

(1− µv)βv2k)

φ∅1 =
K∑

k=1

θk(
V∑

v=1

(1− µv)βv1k)µ1β12k φ∅2 =
K∑

k=1

θk(
V∑

v=1

(1− µv)βv1k)µ2β22k

We show that µ1 and µ2 are uniquely determined using an argument similar to that used

by Glonek. Consider the system of linear equations derived from the full set of φ values given

previously.

Φ

[
1
µ1

1
µ2

]
=

[
(φ11 + φ12 + φ1∅) (φ21 + φ22 + φ2∅)

(φ11 + φ21 + φ∅1) (φ12 + φ22 + φ∅2)

][
1
µ1

1
µ2

]
=

[
1

1

]
(5.4.12)

This system will have a unique solution for µ1 and µ2 assuming both are greater than 0, and

the matrix Φ of sums of φ coefficients is non-singular. We note that the entry Φ(d, v) is equal

to the marginal observed probability P (wd = v). This result is easily extended to the general

case when D ≥ V by defining Φ(d, v) as follows:

Φ(d, v) =
∑

x1

· · ·
∑

xd−1

∑

xd+1

· · ·
∑

xD

φx1···xd−1vxd+1···xD
(5.4.13)

As before the relation
∑

v Φ(d, v)/µv = 1 holds. Suppose that for some set of V data

dimensions, the corresponding matrix Φ is nonsingular. Without loss of generality we can

assume it is the first V dimensions of the data. Under these conditions, the following system

has a unique solution, and the CPT-v selection model parameters are uniquely identified.




Φ11 Φ12 · · · Φ1V

Φ21 Φ22 · · · Φ2V

...
. . .

...

ΦV 1 ΦV 2 · · · ΦV V







1
µ0

1
µ1

...

1
µV




=




1

1
...

1




(5.4.14)

The matrix Φ may have an interesting interpretation as far as inferring the selection model

parameters from data is concerned. Consider the case where data is generated exactly from a

CPT-v selection model paired with a multinomial mixture model. In this case we can directly

estimate the Φdv coefficients from the data, and they will be correct up to sampling error. We

can select a suitable set of V items and compute estimate for the µv parameters. However, in
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the presence of deviations from the CPT-v model, the estimates obtained from this procedure

may not be probabilities.

It is a well known fact of linear algebra that the condition number of a linear system,

the ratio of largest to smallest singular value of the coefficient matrix, is an indication of the

sensitivity of the system. If the coefficient matrix has high condition number, then small changes

to the coefficients can result is large changes in the solution to the system. If we construct a

non-singular matrix Φ from a sample of data and see that the condition number of the matrix

is high, this is an indication that the selection model parameters could be highly sensitive to

the particular data sample used to estimate them. On the other hand, if the condition number

is low, the selection model parameters should be fairly invariant to the particular data sample

used to estimate them.

5.4.2 Maximum A Posteriori Estimation

The principal of maximum a posteriori probability states that we should select the parameters

θ, β, and µ with maximum posterior probability. As in the case of the finite Bayesian mixture

model, maximum a posteriori estimation can be accomplished using an expectation maximiza-

tion algorithm. To derive the expectation maximization algorithm we first require the posterior

distribution of the mixture indicator variable zn and the missing ratings xm
n given the observed

data xo
n, the response indicators rn and the parameters θ, β, µ. At this point, we also introduce

the available rating indicators an to properly account for held out test data during inference and

learning. To help simplify the notation, we introduce the auxiliary variables γdkn in Equation

5.4.15. The posterior distribution is denoted qn(k,xm
n ) and given in Equation 5.4.16.

γdkn =

(
V∏

v=1

(βvdkµv)
[xdn=v]

)[rdn=1][adn=1]( V∏

v=1

(βvdk(1− µv))
[x=v]

)[rdn=0][adn=1]

·
(

V∑

v=1

βvdkµv

)[rdn=1][adn=0]( V∑

v=1

βvdk(1− µv)

)[rdn=0][adn=0]

(5.4.15)

qn(k,xm
n ) = P (zn = k,xm

n |xo
n, rn,an, θ, β, µ) =

P (zn = k,xm
n ,x

o
n, rn|an, θ, β, µ)

P (xo
n, rn|an, θ, β, µ)

=

θk

D∏

d=1

V∏

v=1

(µvβvdk)
[rdn=1][xdn=v]((1− µv)βvdk)

[rdn=0][xdn=v]

K∑

k=1

θk

D∏

d=1

γdkn

(5.4.16)
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This posterior distribution has a number of terms that is again exponential in the number

of missing data values. We form the expected complete log posterior shown below based on the

missing data posterior distribution qn(k,xm
n ) given in Equation 5.4.16, the complete likelihood

given in Equation 5.4.8, and the prior distribution. As we will see, the required expectations

are functions of at most two variables, and can be efficiently computed.

E[logP(β, θ, µ|{xn, rn,an}n=1:N , α, φ, ξ)] = log Γ(
K∑

k=1

αk)−
K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1) log θk

+
K∑

k=1

D∑

d=1

log Γ(
V∑

v=1

φvdk)−
V∑

v=1

log Γ(φvdk) +
V∑

v=1

(φvdk − 1) log βvdk

+
V∑

v=1

log Γ(ξ0v + ξ1v)− log Γ(ξ0v)− log Γ(ξ1v) + (ξ1v − 1) log µv + (ξ0v − 1) log(1− µv)

+
N∑

n=1

K∑

k=1

∑

xm
n

qn(k,xm
n )[zn = k] log θk

+
N∑

n=1

K∑

k=1

∑

xm
n

D∑

d=1

V∑

v=1

qn(k,xm
n )[zn = k][xdn = v][rdn = 1][adn = 1](log βvdk + log µv)

+
N∑

n=1

K∑

k=1

∑

xm
n

D∑

d=1

V∑

v=1

qn(k,xm
n )[zn = k][xdn = v][rdn = 1][adn = 0](log βvdk + log µv)

+
N∑

n=1

K∑

k=1

∑

xm
n

D∑

d=1

V∑

v=1

qn(k,xm
n )[zn = k][xdn = v][rdn = 0][adn = 0](log βvdk + log(1− µv))

(5.4.17)

The expected complete log posterior can be simplified significantly. First, we note that the

term
∑

xm
n
qn(k,xm

n )[zn = k] log θk depends only on k and not on xm
n . This is also true for the

term qn(k,xm
n )[zn = k][xdn = v][rdn = 1][adn = 1](log βvdk + log µv) since xdn is not missing

when rdn = 1 and adn = 1. We can sum qn(k,xm
n ) over xm

n to obtain the simplified posterior

term qn(k) as seen below. This yields the simplified factors of the form qn(k)[zn = k] log θk,

and qn(k)[zn = k][xdn = v][rdn = 1][adn = 1](log βvdk + log µv).

qn(k) = P (zn = k|xo
n, rn,an, θ, β, µ) =

P (zn = k,xo
n, rn|an, θ, β, µ)

P (xo
n, rn|an, θ, β, µ)

=
θk

∏D
d=1 γdkn∑K

k=1 θk
∏D

d=1 γdkn

Terms where [adn = 0] can also be simplified since they depend on exactly one missing data

value. Assume that dimension d is missing, we can sum out over the remaining missing data

dimensions to obtain a simplified posterior factor of the form qn(k, v, d) as seen in Equation

5.4.18. The value of qn(k, v, d) is simple to compute given the value of qn(k).
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qn(k, v, d) = P (zn = k, xdn = v,xo
n, rn|an, θ, β, µ)

= qn(k)

(
µvβvdk∑V

v′=1 µv′βv′dk

)[rdn=1][adn=0](
(1− µv)βvdk∑V

v′=1(1− µv′)βv′dk

)[rdn=0][adn=0]

(5.4.18)

Another useful posterior probability is the probability that a missing rating takes value v.

We denote this distribution by qn(v, d). This distribution can be obtained from qn(k, v, d) by

marginalizing over k.

qn(v, d) = P (xdn = v,xo
n, rn|an, θ, β, µ) =

K∑

k=1

qn(k, v, d)

We rewrite the expected complete log posterior using the simplified posterior distributions.

It is clear from this form that the expected complete log posterior depends only on a relatively

small set of local posterior factors, all of which can be efficiently computed.

E[logP(β, θ, µ|{xn, rn,an}n=1:N , α, φ, ξ)] = log Γ(
K∑

k=1

αk)−
K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1) log θk

+

K∑

k=1

D∑

d=1

log Γ(

V∑

v=1

φvdk)−
V∑

v=1

log Γ(φvdk) +

V∑

v=1

(φvdk − 1) log βvdk

+
V∑

v=1

log Γ(ξ0v + ξ1v)− log Γ(ξ0v)− log Γ(ξ1v) + (ξ1v − 1) log µv + (ξ0v − 1) log(1− µv)

+
N∑

n=1

K∑

k=1

qn(k)[zn = k] log θk

+
N∑

n=1

K∑

k=1

qn(k)
D∑

d=1

V∑

v=1

[zn = k][xdn = v][rdn = 1][adn = 1](log βvdk + log µv)

+
N∑

n=1

K∑

k=1

D∑

d=1

V∑

v=1

qn(k, v, d)[zn = k][rdn = 1][adn = 0](log βvdk + log(µv))

+
N∑

n=1

K∑

k=1

D∑

d=1

V∑

v=1

qn(k, v, d)[zn = k][rdn = 0][adn = 0](log βvdk + log(1− µv)) (5.4.19)

Finally, we find the partial derivatives of the expected complete log posterior with respect

to the multinomial parameters θ, β, and the Bernoulli parameters µv. We solve the result-



Chapter 5. Unsupervised Learning with Non-Random Missing Data 62

ing gradient equations using Lagrange multipliers to enforce normalization constraints. The

derivation for θ is identical to the finite mixture case.

∂E[logP]

∂θk
=
αk − 1 +

∑N
n=1 qn(k)

θk
− λ = 0

θkλ = αk − 1 +
N∑

n=1

pn(k)

K∑

k=1

θkλ =
K∑

k=1

(αk − 1) +
N∑

n=1

qn(k)

λ = N −K +
K∑

k=1

αk

θk =
αk − 1 +

∑N
n=1 qn(k)

N −K +
∑K

k=1 αk

(5.4.20)

The update for βvdk takes into account both the expected number of observed ratings of

value v explained by component k, and the expected number of missing ratings of value v

explained by component k.

∂E[logP]

∂βvdk
=
φvnk − 1

βvdk
+

∑N
n=1 qn(k)[adn = 1][xdn = v]

βvdk
(5.4.21)

+

∑N
n=1 qn(v, d, k)[adn = 0]

βvdk
− λ = 0

βvdkλ = φvnk − 1 +
N∑

n=1

qn(k)[adn = 1][xdn = v] + qn(k, v, d)[adn = 0]

λ =
V∑

v=1

(φvnk − 1) +
N∑

n=1

qn(k)

βvdk =
φvdk − 1 +

∑N
n=1 qn(k)[adn = 1][xdn = v] + qn(k, v, d)[adn = 0]
∑N

n=1 qn(k)− V +
∑V

v=1 φvdk

(5.4.22)

The update for µv is given by the ratio of the number of observed ratings with value v to

the total number of observed and expected ratings with value v.

∂E[logP]

∂µv
=
ξ1v − 1

µv
+

∑N
n=1

∑D
d=1[rdn = 1][adn = 1][xdn = v] + qn(v, d)[rdn = 1][adn = 0]

µv

− ξ0v − 1

(1− µv)
−
∑N

n=1

∑D
d=1 qn(v, d)[rdn = 0][adn = 0]

(1− µv)
= 0
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= (1− µv)

(
ξ1v − 1 +

N∑

n=1

D∑

d=1

[rdn = 1][xdn = v] + qn(v, d)[rdn = 1][adn = 0]

)

− µv

(
ξ0v − 1 +

N∑

n=1

D∑

d=1

qn(v, d)[rdn = 0][adn = 0]

)
= 0

µv =
ξ1v − 1 +

∑N
n=1

∑D
d=1[rdn = 1][xdn = v] + qn(v, d)[rdn = 1][adn = 0]

ξ1v + ξ0v − 2 +
∑N

n=1

∑D
d=1[rdn = 1][xdn = v] + qn(v, d)[adn = 0]

(5.4.23)

5.4.3 Rating Prediction

The posterior predictive distribution is given below assuming that xdn is missing. Note that

the predictive distribution differs depending on whether xdn was originally selected and rated

by the user or not.

P (Xdn = v|xo
n, rn,an, θ, β, µ) =

K∑

k=1

θk
∏D

d=1 γdkn∑K
k=1 θk

∏D
d=1 γdkn

(
µvβvdk∑V

v′=1 µv′βv′dk

)[rdn=1]

·
(

(1− µv)βvdk∑V
v′=1(1− µv′)βv′dk

)[rdn=0]

(5.4.24)

5.4.4 Experimentation and Results

The standard training and testing protocols described in Sections 5.2.1 and 5.1.3 were applied

to both the finite multinomial mixture model learned using EM assuming MAR (EM MM),

and the finite multinomial mixture/CPT-v model learned using EM (EM MM/CPT-v). A

maximum of 5000 EM iterations were used. General smoothing priors were used for both

models. The prior parameters on βdk were set to φvkd = 2 for all d and k in both models. The

prior parameters on θ were set to αk = 2 for all k in both models. The prior parameters on µv

were set to ξ0v = ξ1v = 2 for all v. Models with 1, 5, 10, and 20 components were trained on

the Yahoo! data. The Jester results are based on models with 5 components.

Figures 5.6(a) to 5.6(d) show the performance of the finite Bayesian multinomial mixture

model (EM MM) compared to the performance of the combined finite multinomial mixture/CPT-

v model (EM MM/CPT-v) on the Yahoo! data set. The horizontal axis represents the number

of mixture components. The vertical axis represents normalized mean absolute error. The solid

lines represent the mean of the error over the five cross validation folds for each model. The

standard error of the mean is shown using dashed lines. The rating prediction results show

that the MM/CPT-v model outperforms the MM model on randomly selected items over the

complete range of model complexity values, while the MM model out-performs the MM/CPT-v

on user-selected items.
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(a) Weak generalization on randomly selected items
from the Yahoo! data set.
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Figure 5.6: Figures 5.6(a) to 5.6(d) show the performance of the finite multinomial mixture
model learned using EM assuming MAR (EM MM) compared to the performance of the com-
bined finite multinomial mixture/CPT-v model learned using EM (EM MM/CPT-v) on the
Yahoo! data set. The horizontal axis represents the number of mixture components. The ver-
tical axis represents normalized mean absolute error. The rating prediction results show that
the MM/CPT-v model vastly outperforms the MM model on randomly selected items over a
range of model complexity values.
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(a) Weak generalization on randomly selected items
from the Yahoo! data set.
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(b) Weak generalization on user selected items from
the Yahoo! data set.

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Strong Rand MAE vs Model Complexity

Model Complexity

M
A

E

(c) Strong generalization on randomly selected items
from the Yahoo! data set.
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(d) Strong generalization on user selected items from
the Yahoo! data set.

Figure 5.7: Figures 5.7(a) to 5.7(d) show the performance of the finite multinomial mixture
model learned using EM assuming MAR (EM MM) compared to the performance of the com-
bined finite multinomial mixture/CPT-v model learned using EM (EM MM/CPT-v+) on the
Yahoo! data set. In this case the CPT-v µ parameters are learned using an additional held-
out sample of ratings for user and randomly selected item. The horizontal axis represents the
number of mixture components. The vertical axis represents normalized mean absolute error.
The rating prediction results show that the MM/CPT-v+ model vastly outperforms the MM
model on randomly selected items over a range of model complexity values.
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(a) Weak generalization on user and randomly se-
lected items from the Jester data set.
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(b) Strong generalization on user and randomly se-
lected items from the Jester data set.

Figure 5.8: Figures 5.8(a) and 5.8(b) show the performance of the finite multinomial mixture
model learned using EM assuming MAR (EM MM) compared to the performance of the com-
bined finite multinomial mixture/CPT-v model learned using EM (EM MM/CPT-v) on the
Jester data. The horizontal axis represents the strength of the synthetic non-random missing
data effect applied to the Jester data set. The vertical axis represents normalized mean absolute
error. The rating prediction results show that the MM/CPT-v model vastly outperforms the
MM model on randomly selected items when there is a strong non-random missing data effect.

Recall that our goal is to obtain an accurate estimate of rating prediction performance over

the whole data matrix. The error on randomly selected items provides an unbiased estimate

of the error on the complete data matrix. Under this criteria the MM/CPT-v model performs

significantly better than the MM model under the MAR assumption. By contrast the error on

user-selected items reflects the selection bias in the user-selected ratings, and is clearly not a

reliable estimate of prediction performance on the complete data matrix.

To asses the value of a small sample of ratings for randomly selected items, ratings from

the set of holdout users described in section 5.1.3 were used to obtain a direct estimate of the

CPT-v µ parameters. The MM/CPT-v model was then trained with the µ parameters fixed

to their estimated values. The estimator for µv is given below. Recall that the hold out set

consists both of ratings for user-selected items, and ratings for randomly selected items so that

the required probabilities can be computed directly.

µv =
P (x = v|r = 1)P (r = 1)

P (x = v|r = 1)P (r = 1) + P (x = v|r = 0)P (r = 0)
(5.4.25)
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P (r = 1) ≈ (1/DN)

N∑

n=1

D∑

d=1

[rdn = 1] (5.4.26)

P (r = 0) ≈ (1/DN)
N∑

n=1

D∑

d=1

[rdn = 0] (5.4.27)

P (x = v|r = 1) ≈
∑N

n=1

∑D
d=1[xdn = v][rdn = 1][adn = 1]

∑N
n=1

∑D
d=1[rdn = 1][adn = 1]

(5.4.28)

P (x = v|r = 0) ≈
∑N

n=1

∑D
d=1[xdn = v][rdn = 0][adn = 1]

∑N
n=1

∑D
d=1[rdn = 1][adn = 0]

(5.4.29)

Figures 5.7(a) to 5.7(d) give a comparison between CPT-v trained using this modified

protocol (EM MM/CPT-v+), and the baseline multinomial mixture model assuming MAR (EM

MM). The rating prediction results again show that the MM/CPT-v+ model vastly outperforms

the MM model on randomly selected items. Learning the CPT-v parameters on held-out data

also yields significantly better performance than jointly learning the CPT-v parameters and

mixture model parameters using the EM algorithm. This demonstrates that a small number of

ratings for randomly selected items can yield a significant benefit.

Figures 5.8(a) and 5.8(b) show the performance of the finite multinomial mixture model

learned using EM assuming MAR (EM MM) compared to the performance of the combined

finite multinomial mixture/CPT-v model learned using EM (EM MM/CPT-v) on the Jester

data. The standard training protocol where both missing data parameters and mixture model

parameters are jointly learned was used for the MM/CPT-v model. The horizontal axis repre-

sents the strength of the synthetic non-random missing data effect applied to the Jester data

set. The vertical axis represents normalized mean absolute error. The rating prediction results

show that the MM/CPT-v model vastly outperforms the MM model on randomly selected items

when there is a strong non-random missing data effect. The two models perform similarly when

missing data is missing at random.

It is interesting to note that the error on randomly-selected items actually goes down in all

of these experiments as the effect strength increases. This is due to the fact that we condition on

the value of rdn when making predictions for xdn. As the effect strength increases the prediction

problem become easier because the value of rdn carries a significant amount of information about

the value of xdn. The error on user-selected items shows a similar trend for the MM model,

which assuming MAR . The explanation for the MM model is that the distribution of ratings

for user-selected items becomes increasingly concentrated on high rating values as the effect

strength increases. The user-selected rating values thus become easier to predict.
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Figure 5.9: Bayesian network for the Dirichlet Process mixture/CPT-v model combination.

5.5 The Dirichlet Process Mixture/CPT-v Model

One issue with the Bayesian Mixture/CPT-v model combination is the difficulty in choosing

the number of clusters K. In this section we show how the CPT-v missing data model can be

combined with a Dirichlet Process mixture model. The combined model is illustrated in figure

5.9. The probability model is given in Equations 5.5.1 to 5.5.5.

P (φ|φ0, α) = DP(αφ0) (5.5.1)

P (βn|φ) = φ(βn) (5.5.2)

P (µ|ξ) =
∏

v

B(µv|ξv) (5.5.3)

P (X = xn|βn) =
D∏

d=1

V∏

v=1

β
[xdn=v]
vdk (5.5.4)

P (R = rn|X = xn, µ) =
D∏

d=1

V∏

v=1

µ[rdn=1][xdn=v]
v (1− µv)

[rdn=0][xdn=v] (5.5.5)

Unlike the Dirichlet process mixture model under the missing at random assumption, sum-

ming over the missing data in the Dirichlet Process mixture/CPT-v model renders the parame-

ter updates non-conjugate. Given a partition consisting of K clusters, the posterior distribution

on βdk is shown in Equation 5.5.6. It is not difficult to see that this posterior distribution is

non-Dirichlet.
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P (βdk| {xn, rn,an, zn}n=1:N , µ, φ0)

∝
N∏

n=1

(
V∏

v=1

β
[xdn=v][rdn=1][adn=1][zn=k]
vdk

)
·
(

V∑

v=1

µvβvdk

)[rdn=1][adn=0][zn=k]

·
(

V∑

v=1

(1− µv)βvdk

)[rdn=0][adn=0][zn=k]( V∏

v=1

βφvd0−1
vdk

)
(5.5.6)

The straightforward approach to avoiding non-conjugate parameter sampling is to sample all

of the missing data values given the current partition and parameter values. With the missing

data values included in the state of the Gibbs sampler, the Gibbs updates consist of sampling

from Dirichlet, Beta, or discrete distributions. While simple, this sampling scheme is not

practical in the collaborative filtering case. First, sampling all of the missing data means that

the space complexity of the inference algorithm scales with the size of the complete data matrix

instead of the number of observed ratings. Second, introducing millions of additional state

variables into the Gibbs sampler has a severely detrimental affect on mixing time, rendering

the naive sampler effectively useless.

5.5.1 An Auxiliary Variable Gibbs Sampler

In this section we describe an exact auxiliary variable sampler for the Dirichlet Process mixture/CPT-

v model. The sampler exploits two key properties of the combined model. First, the missing

data can be analytically summed over when assigning a data case to a mixture component.

This includes the case of assignment to a previously unrepresented component. Second, the

parameter updates for βvdk and µv depend only on counts of observed and missing rating val-

ues. It is possible to exactly sample the missing rating counts as auxiliary variables without

simultaneously storing the missing ratings for each user.

We give the cluster assignment updates in Equations 5.5.7 and 5.5.9. Equation 5.5.7 gives

the probability that data case n is assigned to occupied cluster k. This probability can be

viewed as the product of a prior term, and a likelihood term. The prior component of the

update probability follows from the Chinese Restaurant Process, and depends only on the

concentration parameter, and the number of data cases assigned to each occupied component.

The likelihood component of equation 5.5.7 is obtained by summing over missing data values

as in the finite mixture case.
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If zj = zn = k for some j 6= n P (zn = k|z−n,x
o
n, rn,an, β, α, µ)

∝ P (zn = k|z−n, α)P (xo
n, rn|an, βk, µ)

∝ P (zn = k|z−n, α)
∑

xm
n

P (xo
n,x

m
n , rn|an, βk, µ)

∝
∑N

i6=n[zi = k]

N − 1 + α

D∏

d=1

(
V∏

v=1

βvdk
[xdn=v]

)[rdn=1][adn=1]( V∑

v=1

µvβvdk

)[rdn=1][adn=0]

(5.5.7)

·
(

V∑

v=1

(1− µv)βvdk

)[rdn=0][adn=0]

P (zn 6= zj ∀ j 6= n|z−n,x
o
n, rn,an, α, µ, φ0)

∝ P (zn 6= zj ∀ j 6= n |z−n, α)

∫ ∑

xm
n

P (xo
n,x

m
n , rn|an, β, µ)P (β|φ0)dβ (5.5.8)

∝ α

N − 1 + α

D∏

d=1

(
V∏

v=1

φvd0∑
v φvd0

[xdn=v]
)[rdn=1][adn=1]( V∑

v=1

µv
φvd0∑
v φvd0

)[rdn=1][adn=0]

·
(

V∑

v=1

(1− µv)
φvd0∑
v φvd0

)[rdn=0][adn=0]

(5.5.9)

Equation 5.5.9 gives the probability that data case n is assigned to a new cluster. This

probability can again be viewed as the product of a prior term, and a likelihood term. The

prior component of the update probability again follows from the Chinese Restaurant process,

and depends only on the concentration parameter. The likelihood component of equation

5.5.9 is obtained by simultaneously summing over missing data values, and integrating over β

with respect to the base distribution φ0. The multi-dimensional integral in Equation 5.5.8 is an

expectation with respect to the base distribution, which is itself factorized over data dimensions

d. Due to independence of the data dimensions, the expectation of the product over dimensions

d is equal to the product of expectations. If the value of dimension d is observed to be v,

then the expected value simplifies to Eφ0
[βvd]. If the value of dimension d is not observed, but

dimension d was originally rated, the expected value simplifies to Eφ0
[
∑
µvβvd]. By linearity of

expectation this gives
∑
µvEφ0

[βvd]. If the value of dimension d is not observed, and dimension

d was originally not rated then the expected value simplifies to Eφ0
[
∑

(1−µv)βvd]. By Linearity

of expectation this gives
∑

(1− µv)Eφ0
[βvd]. Equation 5.5.9 is obtained by using the Dirichlet

expectation Eφ0
[βvd] = φvd0/

∑
v φvd0.

The updates given in Equations 5.5.7 and 5.5.9 clearly show that the cluster assignments
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can be updated without sampling the missing data values. As mentioned at the start of this

section, the updates for β and µ are much easier if we sample the missing data values for each

data case. The drawback is that the space complexity of the inference method then depends

on the size of the data matrix instead of the number of observed entries.

To overcome this problem we introduce an exact auxiliary variable Gibbs sampling scheme.

The auxiliary variables consist of counts Cvdk00 and Cvdk10. Cvdk00 represents the number of

data cases where xdn = v, zn = k, rdn = 0, and adn = 0. This is the number of data cases

assigned to cluster k where dimension d was not rated by the user and the rating is not available,

but the underlying value is believed to be v. Cvdk10 represents the number of data cases where

xdn = v, zn = k, rdn = 1, and adn = 0. This is the number of data cases assigned to cluster k

where dimension d was rated by the user, the rating is not available, but the underlying value

is believed to be v. Given the current partition and parameter values, the variables Cvdk00 and

Cvdk10 are multinomial-distributed as seen in Equations 5.5.10 and 5.5.11. We define Ndk00 to

be the total number of data cases assigned to cluster k where dimension d was not rated, and is

not observed. Ndk10 is defined to be the total number of data cases assigned to cluster k where

dimension d was rated by the user, but the rating is not available.

P (Cdk00 = cdk00|z,xo, r,a, β, µ) =
Ndk00!∏V

v=1 cvdk00!

V∏

v=1

P (xd = v|rd = 0, ad = 0, zn = k)cvdk00

=
Ndk00!∏V

v=1 cvdk00!

V∏

v=1

(
(1− µv)βvmk∑V
v=1(1− µv)βvmk

)cvdk00

(5.5.10)

P (Cdk10 = cdk10|z,xo, r,a, β, µ) =
Ndk10!∏V

v=1 cvdk10!

V∏

v=1

P (xd = v|rd = 1, ad = 0, zn = k)cvdk10

=
Ndk10!∏V

v=1 cvdk10!

V∏

v=1

(
µvβvmk∑V

v=1 µvβvmk

)cvdk10

(5.5.11)

Sampling a value for c1dk00 to cV dk00 is accomplished by independently drawing Ndk00 sam-

ples from the distribution P (xd = v|rd = 0, ad = 0, zn = k), and counting the number of samples

with each rating value v. Drawing values for c1dk10 to cV dk10 is similar. It is clear that the

storage space required to sample all of the auxiliary variables is independent of the number of

missing data values, while the amount of computation is proportional to the number of missing

data values. We note that drawing M samples from the same discrete distribution can be more

efficient than drawing one sample from each of M different discrete distributions. Thus, it is

preferable to sample missing values corresponding to a particular dimension and cluster at the

same time, instead of sampling all missing values for a particular data case.
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To derive the updates for β, we assume that all missing data values have been sampled.

As we see in Equation 5.5.12, the update for βdk reduces to a function of the auxiliary count

variables cvdk00, cvdk10, and the observed counts cvdk11 =
∑

n[zn = k][xdn = v][rdn = 1][adn = 1].

P (βvdk|z,xo,xm, r, φ0) ∝
N∏

n=1

P (xdn|βdk)P (βdk|φd0)

∝
N∏

n=1

V∏

v=1

βvdk
[rdn=1][xdn=v][zn=k]+[rdn=0][xdn=v][zn=k] ·

V∏

v=1

βφvd0−1
vdk

∝
N∏

n=1

V∏

v=1

βvdk
cvdk11+cvdk10+cvdk00+φvd0−1

= D(cvdk11 + cvdk10 + cvdk00 + φvd0) (5.5.12)

We assume that all missing values have been sampled, and derive the update for µv. We

find that the updates depend on the counts variables as seen in Equation 5.5.13.

P (µv|xo,xm, r, ξ) ∝
N∏

n=1

D∏

d=1

µ[rdn=1][xdn=v]
v (1− µv)

[rdn=0][xdn=v] · µη1v−1
v (1− µv)

η0v−1

∝ µη1v−1+
∑N

n=1

∑D
d=1

[rdn=1][xdn=v]
v (1− µv)

η0v−1+
∑N

n=1

∑N
n=1

[rdn=0][xdn=v]

∝ µη1v−1+
∑K

k=1

∑D
d=1

cvdk11+cvdk10

v (1− µv)
η0v−1+

∑K
k=1

∑D
d=1

cvdk00

= B(η1v +

K∑

k=1

D∑

d=1

cvdk11 + cvdk10, η0v +

K∑

k=1

D∑

d=1

cvdk00) (5.5.13)

The complete Gibbs sampler consists of updating the cluster assignment for each data case

n. These updates are based on observed data values, response indicator values, and current

parameter values. Next, the auxiliary count variables are sampled from their exact posterior

distribution given the current clustering and parameter values. The parameter values β and

µ are updated using the auxiliary count variables and the auxiliary count variables are then

discarded. The fact that the cluster assignment step does not depend on the auxiliary count

variables allows the Gibbs sampler to mix much more efficiently than the naive Gibbs sampler.

5.5.2 Rating Prediction for Training Cases

Rating prediction for training cases is straightforward. Assuming that xdn is missing, the

posterior predictive distribution is obtained by averaging across samples. The desired posterior

predictive distribution is P (xdn = v|rn,x
o
n,an, α, φ0, η). We assume that a total of S samples
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have been obtained from the above Gibbs sampler. We denote the parameter samples by βs
vmk,

µs
v, the cluster indicator samples by zs

n, and the number of cluster by Ks. As in the finite

mixture case, the posterior predictive distribution contains two cases depending on whether

xdn was originally rated by the user or not. Note that we assume the data dimensions we make

predictions for are not observed dimensions.

P (xdn = v|{xo
i , ri,ai}i=1:N , α, φ0, η) ≈

1

S

S∑

s=1

P (xdn = v|rdn, z
s
n, β

s, µs)

=
1

S

S∑

s=1

Ks∑

k=1

[zs
n = k]

(
µvβvdk∑V

v=1 µvβvdk

)[rdn=0](
(1− µv)βvdk∑V
v=1(1− µv)βvdk

)[rdn=0]

(5.5.14)

5.5.3 Rating Prediction for Novel Cases

To make predictions for novel data cases we introduce a set of pseudo mixture proportions

θ̂s for each sample s. θ̂s
k is equal to the probability under the Chinese Restaurant Process of

assigning a new data point to occupied cluster k for k ≤ KS . θ̂s
K+1 is the probability under the

Chinese Restaurant process of assigning a new data point to a new cluster.

We also introduce a set of pseudo parameters β̂s for the mixture component distributions.

For k ≤ Ks, we set β̂s
vdk = βs

vdk. For k = Ks + 1 we set β̂s
vdk to the probability that xdn = v

under the base distribution φ0, P (xdn = v|φ0). This is the likelihood term used to compute the

posterior probability that a data case should be assigned to a new component.

θ̂s
k =





∑N
n=1

[zn=k]
N+α ... k ≤ Ks

α
N+α ... k = Ks + 1

β̂s
vdk =





βs
vdk ... k ≤ Ks

φvd0∑V
v=1

φvd0

... k = Ks + 1
(5.5.15)

The parameters θ̂s, and β̂s, and µs define a finite mixture/CPT-v model with Ks + 1

components for each sample s. We can compute the approximate predictive distribution for

novel data cases by averaging the predictive distribution under each model. Computing the

predictive distribution under each model is identical to the finite mixture/CPT-v case.

P (xd∗ = v|r∗,xo
∗,a∗, {xn, rn,an}n=1:N , α, φ, η) ≈

1

S

S∑

s=1

P (xd∗ = v|rd∗,xd∗,ad∗, θ̂
s, β̂s, µs)

(5.5.16)
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Weak Rand Weak User Strong Rand Strong User

MCMC DP 0.7658± 0.0031 0.5735± 0.0004 0.7624± 0.0063 0.5767± 0.0077

MCMC DP/CPT-v 0.5548± 0.0037 0.6798± 0.0049 0.5549± 0.0026 0.6670± 0.0071

MCMC DP/CPT-v+ 0.4421± 0.0008 0.7814± 0.0082 0.4428± 0.0027 0.7537± 0.0026

Table 5.1: This table compares rating prediction performance for methods based on the Dirich-
let process mixture model. Results are given in terms of normalized mean absolute error. Model
variations include the basic DP multinomial mixture model assuming MAR (MCMC DP), the
combined DP multinomial mixture/CPT-v model (MCMC DP/CPT-v), and the combined DP
multinomial mixture/CPT-v model with CPT-v µ parameters estimated based on a held-out
sample of ratings for user-selected and randomly selected items (MCMC DP/CPT-v+). Results
on randomly selected items show that the DP/CPT-v combination significantly outperforms
the basic DP mixture, which assumes MAR. Further, DP/CPT-v+ significantly out-performs
DP/CPT-v indicating the benefit of a held-out sample of ratings for randomly selected items.

5.5.4 Experimentation and Results

The training and testing protocols described in Sections 5.1.3 and 5.2.1 were applied to both the

Dirichlet process multinomial mixture model assuming MAR (MCMC DP), and the Dirichlet

process multinomial mixture/CPT-v combination (MCMC DP/CPT-v). Sampling in the basic

Dirichlet process mixture was performed using the collapsed Gibbs sampler described in Section

4.2.3. Sampling in the DP/CPT-v model was performed using the auxiliary variable method

described in this section. A total of 1000 Gibbs iterations were performed in each model and a

fixed burn-in of 100 iterations was used. Following the burn in period, one sample was recorded

every ten Gibbs iterations. As in the finite mixture experiments, general smoothing priors were

used for both models. The prior parameters on βdk were set to φvkd = 2 for all d and k in both

models. The concentration parameter was set to αk = 2 for all k in both models. The prior

parameters on µv were set to ξ0v = ξ1v = 2 for all v. Strong generalization performance was

assessed using the approximate prediction rule for novel data cases.

Table 5.1 summarizes the performance of the DP/CPT-v model compared to the basic DP

model assuming MAR on the Yahoo! data set in terms of normalized mean absolute error. The

results again show a substantial decrease in error using the CPT-v missing data model. We again

used ratings from the set of holdout users to estimate the µv parameters directly as described

in the finite mixture case. The µv parameters were then fixed, and sampling was carried out

for the remaining parameters in the DP/CPT-v model. The results are also summarized in

Table 5.1 (MCMC DP/CPT-v+), and again show a significant increase in performance when

the µ parameters are estimated using held out ratings for randomly selected items relative to

sampling for µ along with the rest of the model parameters.

Figures 5.10(a) and 5.10(b) show the performance of the multinomial DP mixture model as-

suming MAR compared to the performance of the combined finite DP multinomial mixture/CPT-
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(a) Weak generalization on user and randomly se-
lected items from the Jester data set.
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(b) Strong generalization on user and randomly se-
lected items from the Jester data set.

Figure 5.10: Figures 5.10(a) and 5.10(b) show the performance of the DP multinomial mix-
ture model learned using the collapsed Gibbs sampler assuming MAR (MCMC DP) compared
to the performance of the combined DP multinomial mixture/CPT-v model learned using the
Gibbs sampler (MCMC DP/CPT-v) on the Jester data set. The vertical axis represents nor-
malized mean absolute error. The rating prediction results show that the DP/CPT-v+ model
outperforms the basic DP model when there is a strong non-random missing data effect.

v model on the Jester data. The standard training protocol where both missing data parameters

and mixture model parameters are jointly sampled was used for the DP/CPT-v model. The

horizontal axis represents the strength of the synthetic non-random missing data effect applied

to the Jester data set. The vertical axis represents normalized mean absolute error. The rating

prediction results again show that the DP/CPT-v model vastly outperforms the standard DP

model on randomly selected items when there is a strong non-random missing data effect. The

two models perform similarly when missing data is missing at random.

5.6 The Finite Mixture/Logit-vd Model

The Dirichlet Process mixture/CPT-v model demonstrates the combination of the CPT-v miss-

ing data model with the more flexible Dirichlet Process mixture data model. In this section

we consider combining the finite mixture model with a more flexible missing data model, the

Logit-vd model, a variation of the Logit model introduced by Marlin, Roweis, and Zemel for

collaborative prediction [54]. The main idea behind the Logit-vd model is to allow the missing

data probability for an item to depend on both the value of the underlying rating, and the

identity of the item. The Logit-vd model specifies a restricted form for this relationship as seen
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Figure 5.11: Bayesian network for the finite mixture/Logit-vd model combination.

in Equation 5.6.1. The σv factor models a non-random missing data effect that depends on

the underlying rating value. This effect is constrained to be the same across all items. The ωd

factor models a per-item missing data effect. This effect can be useful if all items do not have

the same exposure in a recommender system. This situation can arise when some items are

more heavily promoted than others. The Logit-vd model with ωd constrained to be equal for

all d is equivalent to the CPT-v missing data model.

P (rdn = 1|xdn = v) = µvd =
1

1 + exp(−(σv + ωd))
(5.6.1)

The remaining model components are identical to the finite mixture/CPT-v case, except that

σv and ωd are given Gaussian priors. The graphical model for the combined finite mixture/Logit-

vd model is given in Figure 5.11. We give the probabilistic model in Equations 5.6.2 to 5.6.7.

P (θ|α) = D(θ|α) (5.6.2)

P (β|φ) =

K∏

k=1

D∏

d=1

D(βdk|φdk) (5.6.3)

P (σ, ω|ξ, τ, ν, ρ) =
V∏

v=1

N (σv|ξv, τ) ·
D∏

d=1

N (ωd|νd, ρ) (5.6.4)

P (Zn = k|θ) = θk (5.6.5)

P (X = xn|Zn = k, β) =
D∏

d=1

V∏

v=1

β
[xdn=v]
vdk (5.6.6)

P (R = rn|X = xn, µ) =
D∏

d=1

V∏

v=1

µ
[rdn=1][xdn=v]
vd (1− µvd)

[rdn=0][xdn=v] (5.6.7)
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Equation 5.6.8 gives the complete data likelihood assuming the values of mixture indicator

zn and missing rating values xm are known. Equation 5.6.9 gives the observed data likelihood

after integrating over both missing data values, and mixture indicators.

P (zn,xn, rn|β, θ, µ) =
K∏

k=1

(
θk

D∏

d=1

V∏

v=1

(
µ

[rdn=1]
vd (1− µvd)

[rdn=0]βvdk

)[xdn=v]
)[zn=k]

(5.6.8)

P (xo
n, rn|an, β, θ, µ) =

K∑

k=1

θk

D∏

d=1

(
V∏

v=1

(µvdβvdk)
[xdn=v])

)[rdn=1][adn=1]( V∑

v=1

µvdβvdk

)[rdn=1][adn=0]

·
(

V∑

v=1

(1− µvd)βvdk

)[rdn=0][adn=0]

(5.6.9)

5.6.1 Maximum A Posteriori Estimation

The principal of maximum a posteriori probability states that we should select the parameters θ,

β, σ, and ω with maximum posterior probability. We again derive an Expectation Maximization

algorithm to estimate the maximum a posteriori parameters. However, closed form updates for

σ and ω are not possible, necessitating the use of a generalized Expectation Maximization

approach.

The majority of the derivation for the Bayesian mixture/Logit-vd model is identical to the

Bayesian mixture/CPT-v case. We begin by defining the auxiliary variables shown in Equation

5.6.10 to simplify the likelihood.

γdkn =

(
V∏

v=1

(βvdkµvd)
[xdn=v]

)[rdn=1][adn=1]( V∏

v=1

(βvdk(1− µvd))
[x=v]

)[rdn=0][adn=1]

·
(

V∑

v=1

βvdkµvd

)[rdn=1][adn=0]( V∑

v=1

βvdk(1− µvd)

)[rdn=0][adn=0]

(5.6.10)

We give the posterior distribution of the mixture indicator variable zn and the missing

ratings xm
n given the observed data xo

n, the response indicators rn and the parameters θ, β, µ.

We denote this distribution by qn(k,xm
n ).

qn(k,xm
n ) =

θk
∏D

d=1

∏V
v=1(µvdβvdk)

[rdn=1][xdn=v]((1− µvd)βvdk)
[rdn=0][xdn=v]

∑K
k=1 θk

∏D
d=1 γdkn

(5.6.11)

As in the CPT-v case, the full distribution qn(k,xm
n ) is not explicitly required to compute the

expectations needed in the E-step. Instead, a relatively small number of marginal distributions

of the form qn(k), qn(v, d, k), and qn(v, d) suffice. We list these distributions below.
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qn(k) =
θk
∏D

d=1 γdkn∑K
k=1 θk

∏D
d=1 γdkn

qn(k, v, d) = qn(k)

(
µvdβvdk∑V

v′=1 µv′dβv′dk

)[rdn=1][adn=0](
(1− µvd)βvdk∑V

v′=1(1− µv′d)βv′dk

)[rdn=0][adn=0]

qn(v, d) =
K∑

k=1

qn(k, v, d)

We write the expected complete log posterior using the posterior marginal distributions.

This again shows that the expected complete log posterior depends only on a relatively small

set of local posterior factors, all of which can be efficiently computed.

E[logP(β, θ, ω, σ|{xn, rn,an}n=1:N , α, φ, ξ, τ, ν, ρ)] (5.6.12)

= log Γ(
K∑

k=1

αk)−
K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1) log θk

+
K∑

k=1

D∑

d=1

log Γ(
V∑

v=1

φvdk)−
V∑

v=1

log Γ(φvdk) +
V∑

v=1

(φvdk − 1) log βvdk

−
V∑

v=1

1

2
log(2πτ 2)− 1

2τ2
(σv − ξv)2 −

D∑

d=1

1

2
log(2πρ2)− 1

2ρ2
(ωd − νd)

2

+

N∑

n=1

K∑

k=1

qn(k)[zn = k] log θk

+
N∑

n=1

K∑

k=1

qn(k)
D∑

d=1

V∑

v=1

[zn = k][xdn = v][rdn = 1][adn = 1](log βvdk + logµvd)

+
N∑

n=1

K∑

k=1

D∑

d=1

V∑

v=1

qn(k, v, d)[zn = k][rdn = 1][adn = 0](log βvdk + log(µvd))

+
N∑

n=1

K∑

k=1

D∑

d=1

V∑

v=1

qn(k, v, d)[zn = k][rdn = 0][adn = 0](log βvdk + log(1− µvd))

Finally, we find the partial derivatives of the expected complete log posterior with respect

to the multinomial parameters θ, β, and the real-valued parameters σ, and ω. The solution for

β and θ is identical to the CPT-v case. As noted previously, the gradient equations for σ and

ω can not be solved analytically.
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∂E[logP]

∂θk
=
αk − 1 +

∑N
n=1 qn(k)

θk
− λ = 0

θk =
αk − 1 +

∑N
n=1 qn(k)

N −K +
∑K

k=1 αk

(5.6.13)

∂E[logP]

∂βvdk
=
φvnk − 1

βvdk
+

∑N
n=1 qn(k)[adn = 1][xdn = v]

βvdk

+

∑N
n=1 qn(v, d, k)[adn = 0]

βvdk
− λ = 0

βvdk =
φvdk − 1 +

∑N
n=1 qn(k)[adn = 1][xdn = v] + qn(k, v, d)[adn = 0]
∑N

n=1 qn(k)− V +
∑V

v=1 φvdk

(5.6.14)

∂E[logP]

∂µvd
=

∑N
n=1[rdn = 1][adn = 1][xdn = v] + qn(v, d)[rdn = 1][adn = 0]

µvd

−
∑N

n=1 qn(v, d)[rdn = 0][adn = 0]

(1− µvd)
= 0 (5.6.15)

∂E[logP]

∂σv
=

D∑

d=1

∂E[logP]

∂µvd

∂µvd

∂σv
− 1

τ2
(σv − ξv) = 0

=
D∑

d=1

N∑

n=1

∂E[logP]

∂µvd
µvd(1− µvd)−

1

τ2
(σv − ξv) (5.6.16)

∂E[logP]

∂ωd
=

V∑

v=1

∂E[logP]

∂µvd

∂µvd

∂ωd
− 1

γ2
(ωd − νd) = 0

=
V∑

v=1

N∑

n=1

∂E[logP]

∂µvd
µvd(1− µvd)−

1

ρ2
(ωd − νd) (5.6.17)

5.6.2 Rating Prediction

The posterior predictive distribution for the finite mixture/Logit-vd model is identical to the

finite mixture/CPT-v case. The only difference is the definition of the µvd and γvdk auxiliary

variables.

P (Xdn = v|xn, rn,an, θ, β, µ) =
K∑

k=1

θk
∏D

d=1 γdkn∑K
k=1 θk

∏D
d=1 γdkn

(
µvdβvdk∑V

v′=1 µv′dβv′dk

)[rdn=1]

·
(

(1− µvd)βvdk∑V
v′=1(1− µv′d)βv′dk

)[rdn=0]

(5.6.18)
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(a) Weak generalization on randomly selected items
for the Yahoo! data set.
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(b) Weak generalization on user selected items for
the Yahoo! data set.

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Strong Rand MAE vs Model Complexity

Model Complexity

M
A

E

(c) Strong generalization on randomly selected items
for the Yahoo! data set.
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(d) Strong generalization on user selected items for
the Yahoo! data set.

Figure 5.12: Figures 5.12(a) to 5.12(d) show the performance of the finite multinomial mix-
ture model learned using EM assuming MAR (EM MM) compared to the performance of the
combined finite multinomial mixture/Logit-vd model learned using EM (EM MM/Logit-vd) on
the Yahoo! data set. The horizontal axis represents the number of mixture components. The
vertical axis represents normalized mean absolute error. The rating prediction results show
that the MM/Logit-vd model vastly outperforms the MM model on randomly selected items
over a range of model complexity values.
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(a) Weak generalization on randomly selected items
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(b) Strong generalization on randomly selected
items for the Jester data set.

Figure 5.13: Figures 5.12(a) to 5.12(d) show the performance of the finite multinomial mixture
model learned using EM assuming MAR (EM MM) compared to the performance of the com-
bined finite multinomial mixture/Logit-vd model learned using EM (EM MM/Logit-vd). The
horizontal axis represents non-random missing data effect strength. The vertical axis represents
normalized mean absolute error. The rating prediction results show that the MM/Logit-vd
model vastly outperforms the MM model on randomly selected items as the effect strength
increases.

5.6.3 Experimentation and Results

The standard training and testing protocols described in Sections 5.2.1 and 5.1.3 were applied

to both the finite multinomial mixture model learned using EM assuming MAR (EM MM),

and the finite multinomial mixture/Logit-vd model learned using EM (EM MM/Logit). A

maximum of 5000 EM iterations were used to train each model. General smoothing priors were

used for both models. The prior parameters on βdk were set to φvkd = 2 for all d and k in both

models. The prior parameters on θ were set to αk = 2 for all k in both models. A zero mean

Gaussian prior was used on both σv and ωd with a standard deviation of 10. The σv parameters

were all initialized to the same small random value. The ωd parameters were each initialized to

a different small random value. Models with 1, 5, 10, and 20 components were trained on the

Yahoo! data. The Jester results are based on models with 5 components.

Figures 5.12(a) to 5.12(d) show the performance of the finite multinomial mixture model

assuming MAR (EM MM) compared to the performance of the combined finite multinomial

mixture/Logit-vd model (EM MM/Logit) on the Yahoo! data set. The horizontal axis rep-

resents the number of mixture components. The vertical axis represents normalized mean

absolute error. The solid lines represent the mean of the error over the five cross validation
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folds for each model. The standard error of the mean is shown using dashed lines. The rating

prediction results show that the MM/Logit-v model outperforms the MM model on randomly

selected items over the complete range of model complexity values.

Figures 5.13(a) and 5.13(b) show the performance of the finite multinomial mixture model

learned using EM assuming MAR (EM MM) compared to the performance of the combined

finite multinomial mixture/Logit-vd model learned using EM (EM MM/Logit) on the Jester

data. The horizontal axis represents the strength of the synthetic non-random missing data

effect applied to the Jester data set. The vertical axis represents normalized mean absolute error.

The rating prediction results show that the MM/Logit-vd model significantly outperforms the

MM model on randomly selected items when there is a strong non-random missing data effect.

The two models perform similarly when missing data is missing at random.

5.7 Restricted Boltzmann Machines

In this section we present restricted Boltzmann machines (RBMs) for complete data, and two

types of conditional RBMs that can efficiently cope with missing data. Unlike the other mod-

els considered to this point, the conditional RBM models do not follow the data model/selection

model factorization P (X)P (R|X). Instead, they follow the alternative factorization P (R)P (X|R).

Since our only interest is making predictions for missing data values given the corresponding re-

sponse indicators, the distribution P (R) is not needed. Therefore, the conditional RBM models

specify only the distribution P (X|R).

We begin this section by reviewing RBMs for complete data. We then present a new

interpretation of the conditional RBM model for missing data due to Salakhutdinov, Minh, and

Hinton [65]. We extend the basic conditional RBM model and devise a new training protocol

to better deal with prediction for non user-selected items. Finally, we present an empirical

comparison of the two conditional RBM models for missing data.

5.7.1 Restricted Boltzmann Machines and Complete Data

Boltzmann machines are a sub-class of Markov Random fields. A Boltzmann machine is typi-

cally organized into one layer of visible units or observed variables, and multiple layers of hidden

units or latent variables. A Boltzmann machine typically has connections between units in sub-

sequent layers, as well as between units in the same layer [34]. Restricted Boltzmann Machines

are a sub-class of Boltzmann Machines with one layer of hidden units, and no connections

between units in the same layer [70].

The joint probability distribution over the data xn and the hidden units zn defined by a

Restricted Boltzmann machine is specified in terms of an energy function E(xn, zn) as seen in
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Equation 5.7.1. The denominator of Equation 5.7.1 requires summing over all joint configura-

tions of the visible and hidden units, and is referred to as the partition function. The probability

of a data case is obtained from the joint distribution by summing over all configurations of the

hidden units as seen in Equation 5.7.2.

P (xn, zn) =
exp(−E(xn, zn))∑
x

∑
z exp(−E(x, z))

(5.7.1)

P (xn) =
∑

z

exp(−E(xn, z))∑
x

∑
z exp(−E(x, z))

(5.7.2)

Restricted Boltzmann Machines can be defined for a variety of visible and hidden unit

types. In this section we focus on restricted Boltzmann machines with binary hidden units and

categorical visible units. We denote the number of hidden units by K. Equation 5.7.3 shows a

typical energy function consisting of weights between the visible and hidden units parameterized

by W , as well as biases on the visible and hidden units parameterized by b and c respectively.

E(xn, zn) = −
D∑

d=1

V∑

v=1

K∑

k=1

Wvdk[xdn = v][zkn = 1]−
D∑

d=1

V∑

v=1

bvd[xdn = v]−
K∑

k=1

ck[zkn = 1]

(5.7.3)

The conditional distribution of xdn given the hidden units is shown in Equation 5.7.4. The

conditional distribution takes the form of a softmax function since xdn is a categorical variable.

The conditional distribution of zkn given the complete vector of visible units is shown in equation

5.7.5. The conditional distribution takes the form of a logistic distribution since zkn is a binary

variable.

P (xdn = v|zn,W, b) =
exp(

∑K
k=1Wvdk[zkn = 1] + bvd)∑V

v=1 exp(
∑K

k=1Wvdk[zkn = 1] + bvd)
(5.7.4)

P (zkn = 1|xn,W, c) =
1

1 + exp(−(
∑D

d=1

∑V
v=1Wvdk[xdn = v] + ck))

(5.7.5)

Maximum Likelihood Estimation

The maximum likelihood principle states that we should select the parameters W , b, and c with

the highest likelihood given the data. The log likelihood of the parameters given a data set

consisting of N completely observed data vectors is given in Equation 5.7.6.
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L(W, c, b|{xn}n=1:N ) =
N∑

n=1

logP (xn|W, b, c) =
N∑

n=1

log

(
∑

z

exp(−E(xn, z))∑
x

∑
z exp(−E(x, z))

)
(5.7.6)

To fit the parameters by maximum likelihood we use gradient ascent on the log likelihood

function L(W, c, b|{xn}n=1:N ). We derive the gradient of the log likelihood with respect to the

weight Wvdk below. The derivation for the two bias terms is similar.

∂L
∂Wvdk

=
N∑

n=1

1

P (xn|W, b, c)
∂P (xn|W, b, c)

∂Wvdk

= −
∑

z

[zk = 1][xdn = v]P (xn, z|W, c, b)
∂E(xn, z)

∂Wvdk

+ P (xn|W, c, b)
∑

z

∑

x

[zk = 1][xd = v]P (x, z|W, c, b)∂E(x, z)

∂Wvdk

∂E(x, z)

∂Wvdk
= −[xd = v][zk = 1]

∂L
∂Wvdk

=

N∑

n=1

[xdn = v]P (zk = 1|xn,W, c, b)−
∑

z

∑

x

[zk = 1][xd = v]P (x, z|W, c, b) (5.7.7)

The final form of the derivative with respect to Wvdk is given in Equation 5.7.7. The first

term in the derivative is the conditional expectation of number of times that zk = 1 and xd = v

given the data. The second term in the derivative is the unconditional expectation of number of

times that zk = 1 and xd = v. While the derivative has a simple form, it can not be computed

exactly for large D and K due to the fact that computing P (x, z) involves a sum over the V D2K

joint configurations of z and x.

The straightforward approach to overcoming this difficulty is to use a Monte Carlo estimate

of the second term in the derivative. The Restricted Boltzmann Machine admits a very simple

Gibbs sampler based on alternately conditioning on the hidden units and sampling the visible

units according to Equation 5.7.4, and conditioning on the visible units and sampling the hidden

units according to Equation 5.7.5. Once the Gibbs sampler has reached equilibrium, a total

of S samples xs, zs are drawn. The second term in the derivative is approximated as seen in

Equation 5.7.8.

∑

z

∑

x

[zk = 1][xd = v]P (x, z|W, b, c) ≈ 1

S

S∑

s=1

[zs
k = 1][xs

d = v] (5.7.8)
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Contrastive Divergence Learning

The main difficulty with the Gibbs approximation to Maximum Likelihood estimation in the

Restricted Boltzmann machine is the time required to reach the equilibrium distribution using

the Gibbs sampler. Suppose that for each data case n we initialize a different Gibbs sampler by

setting the visible units to xn. We can estimate the second term in the derivative by running

each Gibbs sampler for T steps, taking one sample from each, and using these samples in

Equation 5.7.8. The main insight behind the contrastive divergence learning algorithm is that

a small number of steps, such as T = 1, can yield sufficient information about the gradient for

maximum likelihood learning to succeed [36].

Let Q0 to be the empirical distribution of the data, and Qt to be the distribution of t-

step reconstructions of the data using the Gibbs sampler. The standard Gibbs approach to

maximum likelihood learning can be thought of as minimizing the Kullback-Leibler divergence

KL(Q0||Q∞) since Qt = Q∞ for any t once equilibrium is reached. The T -step contrastive

divergence objective function is C(W, c, b|{xn}n=1:N ) = KL(Q0||Q∞)−KL(QT ||Q∞).

When we take the derivative of the Contrastive Divergence with respect to the parameter

Wvdk in the case of the Restricted Boltzmann Machine, the intractable expectations involv-

ing P (x, z|W, b, c) cancel out. However, we are left with the intractable partial derivative

(∂KL(QT ||Q∞)/∂QT )(∂QT /∂wvdk). The work of Hinton indicates that this term can safely be

ignored, and the derivative approximated by Equation 5.7.9 [36]. Note that xT
dn is the value of

visible unit d in the nth Gibbs sampler (the Gibbs sampler with visible units initialized to xn)

after T Gibbs steps.

∂C
∂Wvdk

=
N∑

n=1

[xdn = v]P (zk = 1|xn,W, b, c)−
∑

z

∑

x

[zk = 1][xd = v]P (x, z|W, b, c)

−
N∑

n=1

[xT
dn = v]P (zk = 1|xT

n ,W, b, c) +
∑

z

∑

x

[zk = 1][xd = v]P (x, z|W, b, c)

− ∂KL(QT ||Q∞)

∂QT

∂QT

∂wvdk

≈
N∑

n=1

[xdn = v]P (zk = 1|xn,W, b, c)−
N∑

n=1

[xT
dn = v]P (zk = 1|xT

n ,W, b, c) (5.7.9)

5.7.2 Conditional Restricted Boltzmann Machines and Missing Data

Unlike Bayesian network models such as factor analysis and mixture models, Markov ran-

dom field models such as restricted Boltzmann machines can not efficiently deal with missing

data. Both the standard Gibbs/Maximum Likelihood algorithm and the contrastive divergence
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Figure 5.14: Figure 5.14(a) shows the missing data RBM model as described by Salakhutdinov et
al. The connectivity between visible and hidden units for each data case is determined by which
data dimensions are observed in that data case. The weight parameters W are shared between
different data cases. Figure 5.14(b) shows a factor graph representation of the same model where
the dependence on the response indicators is made explicit. The factors are fWdk

(xdn, adn, zk) =

exp(
∑V

v=1Wvdk[xdn = v][adn = 1][zk = 1]), fbd
(xdn, adn) = exp(

∑V
v=1 bvd[xdn = v][adn = 1]),

and fck
(zk) = exp(ck[zk = 1]).

algorithm must sample missing visible units as well as latent hidden units. This makes stan-

dard RBM learning inefficient in terms of both computation time and storage space relative to

Bayesian network models such as mixtures.

Salakhutdinov, Minh, and Hinton introduced a variant of the contrastive divergence learning

algorithm for Restricted Boltzmann Machines that can efficiently deal with missing data [65].

The learning algorithm is based on the idea that each data case has a unique model structure

in terms of the subset of visible to hidden edges it includes, while the parameters on each edge

in different models are constrained to be equal. The structure associated with data case xn

has a connection between hidden unit zk and visible unit xd only when the value of xdn is

observed. On the other hand, the weights Wvdk on the connection from zk to xdn are equal to

the weights from zk to xdn′ if dimension d is observed in both data case n, and data case n′.

An illustration of the resulting set of models is given in Figure 5.14(a). Data case n contributes

to the gradient of the contrastive divergence with respect to wvdk only if xdn is observed. This

learning algorithm maintains the sparsity of the data set since samples are only generated for

observed data values.

The algorithm introduced by Salakhutdinov et al. can also be derived as standard con-

trastive divergence learning in a conditional Restricted Boltzmann Machine. Salakhutdinov et

al. discuss a particular type of conditional Restricted Boltzmann Machine with an energy term
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of the form Vdk[adn = 1][zk = 1]. However, the basic learning algorithm discussed above also

implicitly conditions on the available rating indicators adn. Making this conditioning explicit

clarifies the description of the model and the learning algorithm.

We provide a factor graph representation of the basic conditional RBM model for missing

data in Figure 5.14(b). The key difference between the conditional RBM for missing data

and the standard RBM is the definition of the energy function. The energy function for the

conditional RBM is given in Equation 5.7.10. Note that [xdn = v] only appears in the energy

function multiplied by [adn = 1]. Whenever xdn is not available adn = 0, and the value of

[xdn = v][adn = 1] is zero for all v. This is equivalent to removing all edges starting at xdn in

a standard RBM. Note that the basic conditional RBM model does not differentiate between

user-selected and non-user selected ratings.

E(xo
n, zn,an) = −

D∑

d=1

V∑

v=1

K∑

k=1

Wvdk[xdn = v][zkn = 1][adn = 1]−
D∑

d=1

V∑

v=1

bvd[xdn = v][adn = 1]

−
K∑

k=1

ck[zkn = 1] (5.7.10)

Equation 5.7.11 shows the joint probability of the visible and hidden units conditioned on

the response indicators. Equation 5.7.12 shows the probability of the visible units conditioned

on the response indicators.

P (xo
n, zn|an) =

∑

xm
n

exp(−E(xn, zn,an))∑
x

∑
z exp(−E(x, z,an))

=
exp(−E(xo

n, zn,an))∑
xo

∑
z exp(−E(xo, z,an))

(5.7.11)

P (xo
n) =

∑

z

exp(−E(xo
n, z,an))∑

xo

∑
z exp(−E(xo, z,an))

(5.7.12)

It is important to note that missing values xdn can be analytically summed out of Equation

5.7.11 since they make no contribution to the energy function. As a result, the normalization in

the partition function is taken with respect to the observed variables xo only. The conditional

RBM is similar to mixture models under the missing at random assumption in the sense that we

can ignore missing data values during learning and inference. However, the conditional RBM

model does not satisfy the missing at random condition.

Assume for the moment that we are in the simple setting where all observed ratings are

available during inference so that a = r. The conditional RBM has the property that for any

response pattern r, and any two data vectors x1 and x2 such that xo
1 = xo

2, P (x1|r) = P (x2|r).
This is precisely the property needed to ignore missing data during inference and learning.
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Recall from Section 3.1 that the missing at random condition corresponds to the assertion

that for any response pattern r, and any two data vectors x1 and x2 such that xo
1 = xo

2,

P (r|x1) = P (r|x2). Equation 5.7.13 gives the conditional probability P (r|x) for an arbitrary

response distribution P (r).

P (r|x) =
P (x|r)P (r)∑
r′ P (x|r′)P (r′)

=
P (x|r)P (r)

P (x)
(5.7.13)

It is easy to see that P (r|x1) will only be equal to P (r|x2) if the marginal P (x1) = P (x2).

In general this condition will not hold, and missing data generated from the model will not be

missing at random.

Contrastive Divergence Learning

The conditional distribution of xd given the hidden units is shown in Equation 5.7.14. This

equation is the same as in the standard RBM model. The conditional distribution of zk given

the observed visible units and available rating indicators is shown in equation 5.7.15.

P (xd = v|zn,W, b) =
exp(

∑K
k=1Wvdk[zkn = 1] + bvd)∑V

v=1 exp(
∑K

k=1Wvdk[zk = 1] + bvd)
(5.7.14)

P (zk = 1|xo
n,an,W, c) =

1

1 + exp(−(
∑D

d=1

∑V
v=1Wvdk[xdn = v][adn = 1] + ck))

(5.7.15)

It is straightforward to construct a Gibbs sampler for our conditional RBM based on Equa-

tions 5.7.14, and 5.7.15. Note that Equation 5.7.14 specifies the distribution of each data

dimension given a configuration of the hidden units. However, we only draw samples for data

dimensions where adn = 1, since only these dimensions contribute to Equation 5.7.15.

The approximate derivative of the contrastive divergence function with respect to Wvdk is

given in Equation 5.7.16. The samples xT
n are drawn using the Gibbs sampler for the conditional

RBM. Note that this equation is identical to the one implied by Salakhutdinov et al. [65], and

captures the same notion that data cases where xdn is not observed do not contribute to the

contrastive divergence gradient.

∂C
∂Wvdk

≈
N∑

n=1

[xdn = v][adn = 1]P (zk = 1|xn)−
N∑

n=1

[xT
dn = v][adn = 1]P (zk = 1|xT

n ) (5.7.16)
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Figure 5.15: Factor graph representing the conditional RBM model that we refer to as
cRBM/E-v. This model treats user-selected and non user-selected items differently. The fac-
tors are fWdk

(xdn, adn, zk) = exp(
∑V

v=1Wvdk[xdn = v][adn = 1][zk = 1]), fbd
(xdn, rdn, adn) =

exp(
∑V

v=1 b
1
vd[xdn = v][rdn = 1][adn = 1] + b0v[xdn = v][rdn = 0][adn = 1]), and fck

(zk) =
exp(ck[zk = 1]).

Predictive Distribution

Making prediction using a trained conditional RBM is efficient assuming we predict one missing

data dimension at a time. Suppose we are given a data vector xn with response indicator vector

an with adn = 0. To obtain the predictive distribution for data dimension d we add xdn = v

to xo
n for each value of v with adn set to 1 and normalize. This computation involves summing

out over all joint configurations of the hidden units, but can be done in linear time as seen in

Equation 5.7.17 [65].

P (xdn = v|adn = 1,xo
n,a−dn,W, b, c) ∝ P (xdn = v,x−dn|adn = 1,a−dn,W, b, c)

∝ exp(bvd)
K∏

k=1


1 + exp


Wvdk +

D∑

d′ 6=d

V∑

v′=1

wv′d′k[xd′n = v′][ad′n = 1] + ck




 (5.7.17)

5.7.3 Conditional Restricted Boltzmann Machines and Non User-Selected

Items

A key issue with the basic conditional RBM model is that it treats user selected and non-user

selected items in the same way during learning and when making predictions. In the original

application of the model by Salakhutdinov, Minh, and Hinton, predictions are only made for

items selected by the user so this issue does not arise [65]. In this section we present a modifi-

cation of the basic conditional RBM model that we call the cRBM/E-v model. The cRBM/E-v
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learning procedure requires training ratings for both user-selected items and randomly selected

items. Unlike the basic conditional RBM model, the cRBM/E-v model treats user-selected and

non user-selected items differently using energy terms that depend on the response indicators

rn as well as the available rating indicators an. The trained cRBM/E-v model makes differ-

ent predictions for user-selected and non user-selected items in a way that is similar to the

mixture/CPT-v model. This allows the cRBM/E-v model to better deal with prediction for

non user-selected items than the basic cRBM model.

Equation 5.7.18 defines cRBM/E-v model. We have a contribution to the energy of Wvdk if

zk = 1, xdn = 1 and adn = 1. This term is included both when rdn = 1 and rdn = 0. We have

a contribution to the energy of b1vd if xdn = v, adn = 1, and rdn = 1. We have a contribution

to the energy of b0v if xdn = v, adn = 1, and rdn = 0. To train the model we require data that

includes observations of the form adn = 1 and rdn = 0. This situation corresponds to having

rating observations for items that the user did not select. Both the Yahoo! Rating Study data

set and the Jester data set with synthetic missing data include observations of this form.

E(xo
n, zn, rn,an) = −

D∑

d=1

V∑

v=1

K∑

k=1

Wvdk[xd = v][zk = 1][adn = 1]−
K∑

k=1

ck[zk = 1]

−
D∑

d=1

V∑

v=1

b1vd[xd = v][rdn = 1][adn = 1] + b0v[xd = v][rdn = 0][adn = 1]

(5.7.18)

The additional bias term b0v has an equivalent role to the µv parameter in the CPT-v

model. This particular model form was selected since we anticipate a training regime where

ratings for user selected items are abundant, while ratings for randomly selected items are

significantly more scarce. If this were not the case the model could be easily enhanced by

including additional factors in the energy function. Note that we do not include a factor of the

from Vdk[rdn = 1][adn = 1][zk = 1] as used by Salakhutdinov et al. since we have a relatively

small number of observations where rdn = 1 and adn = 0 [65]. The focus of our model is the

complementary case where rdn = 0 and adn = 1.

Contrastive Divergence Learning

The conditional distribution of xdn given the hidden units is shown in Equation 5.7.19. The

conditional distribution of zk given the observed visible units and response indicators is shown

in equation 5.7.20.
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P (xdn = v|rdn, adn, z,W, b) =
exp(

∑K
k=1Wvdk[zk = 1] + b1vd[rdn = 1] + b0v[rdn = 0])

∑V
v=1 exp(

∑K
k=1Wvdk[zk = 1] + b1vd[rdn = 1] + b0v[rdn = 0])

(5.7.19)

P (zk = 1|xo
n, rn,an,W, c) =

1

1 + exp(−(
∑D

d=1

∑V
v=1Wvdk[xdn = v][adn = 1] + ck))

(5.7.20)

It is straightforward to construct a Gibbs sampler for the cRBM/E-v model based on Equa-

tions 5.7.19, and 5.7.20. Note that the predictive distribution for xdn in Equation 5.7.19 is

different depending on whether the user selected the item or not.

The approximate derivative of the contrastive divergence function with respect to Wvdk is

given in Equation 5.7.21. The samples xT
n are drawn using the Gibbs sampler for the cRBM/E-

v specified in Equations 5.7.19, and 5.7.20. Note that items rated under each rating source

contribute to the contrastive divergence gradients. For completeness, we also give the gradients

with respect to b1vd, b
0
v, and ck.

∂C(x|r,a,W, b, c)
∂Wvdk

≈
N∑

n=1

[xdn = v][adn = 1]P (zkn = 1|xn,W, b, c)

−
N∑

n=1

[xT
dn = v][adn = 1]P (zkn = 1|xT

n ,W, b, c) (5.7.21)

∂C(x|r,a,W, b, c)
∂ck

≈
N∑

n=1

(
P (zkn = 1|xn,W, b, c)− P (zkn = 1|xT

n ,W, b, c)
)

(5.7.22)

∂C(x|r,a,W, b, c)
∂b1vd

≈
N∑

n=1

[rdn = 1][adn = 1]
(
[xdn = v]− P (xT

dn = v|W, b, c)
)

(5.7.23)

∂C(x|r,a,W, b, c)
∂b0v

≈
N∑

n=1

D∑

d=1

[rdn = 0][adn = 1]
(
[xdn = v]− P (xT

dn = v|W, b, c)
)

(5.7.24)

Rating Prediction

Making predictions using a trained cRBM/E-v model remains efficient assuming we predict one

missing rating at a time. The predictive distribution again includes two cases corresponding

to whether the item was originally selected by the user or not. The difference between the

two cases comes down to whether the bias term b1vd is used, corresponding to an item that was

selected by the user, or whether the bias term b0v is used, corresponding to an item not selected

by the user. This conditional RBM model can learn and exploit rating patterns such as items

not selected by the user tend to have lower ratings than items selected by the user.
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P (xdn = v|xo
n, rn,an,W, b, c) ∝ P (xdn = v,xo

n|rn,an,W, b, c)

∝ exp(b1vd[rdn = 1]) exp(b0v[rdn = 0])

·
K∏

k=1


1 + exp


Wvdk +

D∑

d′ 6=d

V∑

v′=1

Wv′d′k[xd′n = v′][adn = 1] + ck




 (5.7.25)

5.7.4 Experimentation and Results

The training and testing protocols described in Sections 5.2.1 and 5.1.3 were applied to both

the basic conditional RBM model (cRBM), and the conditional RBM/E-v model (cRBM/E-v).

A total of 1000 iterations of contrastive divergence learning was performed for each model. It-

eration i of the contrastive divergence algorithm used a Gibbs burn-in of di/200e steps followed

by the collection of di/200e samples. A small amount of weight decay was used with regular-

ization parameter set to 0.0001. The cRBM/E-v model was trained on the set of training users

combined with the set of held out users. Models with 1, 5, 10, and 20 hidden units were trained

on the Yahoo! data. The Jester results are based on models with 5 hidden units.

Figures 5.16(a) to 5.16(d) show the performance of the basic conditional RBM model

(cRBM) compared to the conditional RBM/E-v model (cRBM/E-v). The horizontal axis repre-

sents the number of hidden units. The vertical axis represents normalized mean absolute error.

The solid lines represent the mean of the error over the five cross validation folds for each model.

The standard error of the mean is shown using dashed lines. The results show a substantial

decrease in error on randomly selected items using the cRBM/E-v model. However, the error

on randomly selected items increases as the number of components increases, while the error on

user-selected items decreases. This is likely due to the fact a relatively small number of ratings

for randomly selected items was added to a much larger data set of ratings for user-selected

items. The gradient for the W parameter is thus dominated by contributions from user selected

ratings, and appears to over fit these ratings as the number of hidden units increases.

Figures 5.17(a) and 5.17(b) show the performance of the basic conditional RBM model

(cRBM) compared to the performance of the conditional RBM/E-v model (cRBM/E-v) on the

Jester data. The horizontal axis represents the strength of the synthetic non-random missing

data effect applied to the Jester data set. The vertical axis represents normalized mean absolute

error. The rating prediction results show that the cRBM/E-v model out performs the basic

cRBM model when the non-random missing data effect strength is significant.



Chapter 5. Unsupervised Learning with Non-Random Missing Data 93

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Weak Rand MAE vs Model Complexity

Model Complexity

M
A

E

 

 
CD cRBM
CD cRBM/E−v

(a) Weak generalization on randomly selected items
for the Yahoo! data set.
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(b) Weak generalization on user selected items for
the Yahoo! data set.
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(c) Strong generalization on randomly selected items
for the Yahoo! data set.
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(d) Strong generalization on user selected items for
the Yahoo! data set.

Figure 5.16: Figures 5.16(a) to 5.16(d) show the performance of the conditional RBM learned
using contrastive divergence (CD cRBM) compared to the performance of the cRBM/E-v model
(CD cRBM/E-v) on the Yahoo! data. The cRBM/E-v model is trained with an additional set
of ratings of both user selected and randomly selected items. Not surprisingly, the cRBM and
cRBM/E-v models have nearly identical performance on the user selected ratings. On the
randomly selected ratings the cRBM/E-v model out-performs the basic cRBM model, which
does not differentiate between user-selected and non user-selected items.
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(a) Weak generalization on randomly selected items
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(b) Strong generalization on randomly selected
items for the Jester data set.

Figure 5.17: Figures 5.17(a) to 5.17(b) show the performance of the conditional Restricted
Boltzmann Machine learned using contrastive divergence (CD cRBM) compared to the perfor-
mance of the cRBM/E-v model (CD cRBM/E-v) on the Jester data. The cRBM/E-v model is
trained with an additional set of ratings of both user selected and randomly selected items. The
horizontal axis represents non-random missing data effect strength. The vertical axis represents
normalized mean absolute error.

5.8 Comparison of Results and Discussion

The results presented in this chapter show that all of the models that include a non-random

missing data mechanism perform well on the synthetic missing data in the Jester data set as the

non-random effect strength is increased. The error on both randomly selected and user-selected

items decreases as the effect strength increases. This results from the fact that as the effect

strength increases, the response indicators contain an increasing amount of information about

the value of missing ratings. Since the prediction function condition on the response indicators,

the prediction error decreases. Models that treat the missing data in the Jester data set as if

it were missing at random are increasingly mislead about the data distribution as the effect

strength increases. The error on randomly selected items for all of the models that ignore the

missing data mechanism increases as the non-random missing data effect strength increases.

Of course, the Jester data set is quite limited since we know that the underlying missing data

model is exactly a CPT-v mechanism. All of the methods that include a missing data model

have the capacity to model this type of missing data.

The Yahoo! data provides a true test of rating prediction performance in the presence of

an unknown missing data mechanism. Throughout this chapter we have observed that meth-

ods which incorporate even a simple non-random missing data mechanism vastly outperform
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Complexity Rand MAE Complexity User MAE

EM MM 1 0.7725± 0.0024 5 0.5779± 0.0066

EM MM/CPT-v 20 0.5431± 0.0012 10 0.6661± 0.0025

EM MM/Logit 5 0.5038± 0.0030 5 0.7029± 0.0186

EM MM/CPT-v+ 5 0.4456± 0.0033 20 0.7088± 0.0087

MCMC DP N/A 0.7624± 0.0063 N/A 0.5767± 0.0077

MCMC DP/CPT-v N/A 0.5549± 0.0026 N/A 0.6670± 0.0071

MCMC DP/CPT-v+ N/A 0.4428± 0.0027 N/A 0.7537± 0.0026

CD RBM 20 0.7179± 0.0025 10 0.5513± 0.0077

CD cRBM/E-v 1 0.4553± 0.0031 20 0.5506± 0.0085

Table 5.2: Summary of strong generalization error results on the Yahoo! data set. Results
are reported for the model complexity that was found to be optimal according to the weak
generalization estimate of the error on randomly selected and user selected items respectively.
The optimal complexity for randomly selected items is shown in the first column. The second
column shows the average mean absolute error on randomly selected items. The third column
shows the optimal complexity for user-selected items. The fourth column shows the average
mean absolute error on user selected items.

methods that ignore the missing data process on the random item prediction task. Table 5.2

summarizes the performance of the nine model variations we have experimented with in this

chapter. We report the strong generalization mean absolute error on both randomly selected

items and user selected items. Results are reported for the model complexity that achieved the

lowest weak generalization error on randomly selected items and user-selected items, respec-

tively.

Our empirical results show that rating prediction methods based on models that incorporate

an explicit non-random missing data mechanism achieve 25% to 40% lower error rates on the

Yahoo! data compared to methods that assume the missing at random condition holds. To

put these results in perspective, the best models studied in our previous work on collabora-

tive filtering achieve approximately 15% lower error rates relative to the simplest models we

considered [52, p. 107-108].

The best methods overall are MCMC DP/CPT-v+, the Dirichlet process multinomial mix-

ture model/CPT-v combination where the missing data parameters are set using held out

ratings for randomly selected items; and EM MM/CPT-v+, the finite multinomial mixture

model/CPT-v combination where the missing data parameters are set using held out ratings

for randomly selected items. There is no significant difference in the performance of these

methods on randomly selected items.

The CD cRBM/E-v model trained using a combination of ratings for user-selected and

randomly selected items performs somewhat worse than the CPT-v+ variants. As mentioned

previously, this is likely due to the imbalance between randomly selected and user selected item
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K=1 K=5 K=10 K=20

EM MM 0.8153± 0.0007 0.8135± 0.0006 0.8106± 0.0005 0.8073± 0.0006

EM MM/CPT-v 0.8257± 0.0006 0.8325± 0.0006 0.8353± 0.0006 0.8356± 0.0008

EM MM/Logit 0.8251± 0.0005 0.8385± 0.0003 0.8384± 0.0005 0.8381± 0.0010

EM MM/CPT-v+ 0.8282± 0.0003 0.8337± 0.0007 0.8355± 0.0008 0.8367± 0.0007

MCMC DP 0.8167± 0.0007 0.8167± 0.0007 0.8167± 0.0007 0.8167± 0.0007

MCMC DP/CPT-v 0.8259± 0.0010 0.8259± 0.0010 0.8259± 0.0010 0.8259± 0.0010

MCMC DP/CPT-v+ 0.8320± 0.0011 0.8320± 0.0011 0.8320± 0.0011 0.8320± 0.0011

CD cRBM 0.8104± 0.0007 0.8154± 0.0012 0.8174± 0.0010 0.8183± 0.0011

CD cRBM/E-v 0.8211± 0.0007 0.8185± 0.0010 0.8220± 0.0011 0.8210± 0.0009

Table 5.3: Summary of weak generalization ranking results on the Yahoo! data set in terms of
average NDCG score on randomly selected items. Results are reported for model complexity
values from K = 1 to K = 20. Note that the performance of the Dirichlet process models is
independent of K.

during training. It may be possible to improve the performance of the cRBM/E-v model by

altering the gradients to balance the contribution from randomly selected and user-selected

items. It may also be interesting to consider an energy function with more flexibility in terms

of modeling the missing data process.

Of the models that are trained only on user-selected items, the MM/Logit model obtained

significantly lower error than the models incorporating a CPT-v type missing data model. It

appears that the additional flexibility in the MM/Logit model helps to learn a better model.

We note that some instability in the MM/Logit model was noticed when the σv parameters

are not all initialized to the same value. Initializing all the σv to the same small random

value appears to lead to good performance. We also experimented with a DP/Logit model

combination. However, the complete lack of conjugacy created by the logistic function makes

inference much more difficult when compared to the DP/CPT-v case. The development of a

suitable DP/Logit sampling framework is an interesting area for future work.

The MM/CPT-v and DP/CPT-v models again have approximately equal performance when

trained only on user selected items. As was observed by Marlin et al. [53], the MM/CPT-v

model converges to a solution where almost all of the missing data is explained as having been

generated by the second rating value. It was hoped that giving the model more flexibility

during training by moving to a Dirichlet process based mixture and full Bayesian inference

might alleviate this problem. However, the DP/CPT-v model appears to be prone to the same

type of problem on this data set. The development of the auxiliary variable Gibbs sampler

for the DP/CPT-v model is still quite interesting. The naive approach of sampling missing

data values and performing cluster assignments on the basis of the completed data cases is

completely ineffective since it vastly increases the state space of the Gibbs chain. An interesting
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Complexity Rand NDCG

EM MM 1 0.8162± 0.0022

EM MM/CPT-v 20 0.8352± 0.0023

EM MM/Logit 5 0.8398± 0.0012

EM MM/CPT-v+ 20 0.8377± 0.0012

MCMC DP N/A 0.8167± 0.0025

MCMC DP/CPT-v N/A 0.8248± 0.0020

MCMC DP/CPT-v+ N/A 0.8319± 0.0011

CD cRBM 20 0.8207± 0.0011

CD cRBM/E-v 10 0.8244± 0.0017

Table 5.4: Summary of strong generalization ranking loss results on the Yahoo! data set.
Results are reported for the model complexity that was found to be optimal according to the
weak generalization estimate of the average NDCG score on randomly selected items. The
optimal complexity for randomly selected items is shown in the first column. The second
column shows the average strong generalization NDCG score on randomly selected items.

area for future work is the development of a more flexible CPT-type missing data models with

a hierarchical prior distribution.

The models developed in this chapter were designed to address the problem of accurate

rating prediction in the presence of non-random missing data. However, we began this chapter

by describing how rating prediction methods can be used to solve the recommendation task

by predicting ratings for all unrated items, and then recommending the top-rated items. One

question that has been left open to this point is the effect of non-random missing data on

ranking. Tables 5.3 and 5.4 present the results of an experiment to test the weak and strong

generalization ranking performance of the methods studied in this chapter.

The empirical protocol used for ranking is identical to that used for the mean absolute error

rating prediction experiments. Each learned model is used to compute the predictive distribu-

tion over the test items for each user. The test items for each user are then ranked according

to the mean of their predictive distributions, and a Normalized Discounted Cumulative Gain

(NDCG) score is computed for each user given their true rating values. The per-user NDCG

score is computed as seen in Equation 5.8.1 where xt
in is the true value of test rating i for user

n, x̂t
in is the mean of the predictive distribution for test rating i and user n, π(i, n) is the rank

of item i when test items are sorted in descending order by true rating xt
in, π̂(i, n) is the rank

of test item i when items are sorted in descending order according to their predicted ratings

x̂t
in, and T denotes the number of test items. Note that the best value of the NDCG score is 1,

indicating that the estimated ranking agrees with an optimal ranking.
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NDCG(n) =

∑T
i=1(2

xt
in − 1)/ log(1 + π̂(i, n))

∑T
i=1(2

xt
in − 1)/ log(1 + π(i, n))

(5.8.1)

In this experiment we perform mean prediction to rank the ten randomly selected test items

for each survey participant in the Yahoo! data set. The weak generalization results are reported

in Table 5.4 for model complexity values from 1 to 20. The best complexity level for each model

based on the weak generalization NDCG score was determined from Table 5.3. The complexity

level and corresponding strong generalization NDCG score is reported in Table 5.4. These

results show small but significant improvements in average NDCG when the underlying rating

prediction methods learn a model of the missing data mechanism.

An interesting avenue for future research is to consider models that both take into account a

model of the missing data process, and directly optimize a rank loss measure. This is closely re-

lated to the recent work of Weimer, Karatzoglou, Le, and Smola on training matrix factorization

methods for collaborative filtering based on a relaxation of the NDCG score [77].



Chapter 6

Classification With Missing Data

This chapter explores a variety of strategies for performing classification with missing feature

values. The classification setting is particularly affected by the presence of missing feature

values since most discriminative learning approaches including logistic regression, support vector

machines, and neural networks have no natural ability to deal with missing input features. Our

main interest is in classification methods that can both learn from data cases with missing

features, and make predictions for data cases with missing features.

We begin with an overview of strategies for dealing with missing data in classification. Gen-

erative classifiers learn a joint model of labels and features. Generative classifier do have a

natural ability to learn from incomplete data cases and to make predictions when features are

missing. We then discuss several strategies that can be applied to any discriminative classifier

including case deletion, imputation, and classification in subspaces. Finally, we discuss a frame-

work for classification from incomplete data based on augmenting the input representation of

complete data classifiers with a vector of response indicators.

We consider Linear Discriminant Analysis as an example of a generative classifier. We

present both maximum likelihood and maximum conditional likelihood learning methods for

a regularized Linear Discriminant Analysis model with missing data. We review several dis-

criminative classification methods including logistic regression, multi-layer neural networks, and

kernel logistic regression. We consider applying these methods to classification with missing

data using imputation, reduced models, and the response indicator framework.

6.1 Frameworks for Classification With Missing Features

Generative classifiers have a natural ability to deal with missing data through marginalization.

This makes them well suited for dealing with random missing data. The most well known

methods for dealing with missing data in discriminative classifiers are case deletion, imputation,

99
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and learning in subspaces. All of these methods can be applied in conjunction with any classifier

that operates on complete data. In this section we discuss these methods for dealing with

missing data. We also discuss a different strategy for converting a complete data classifier into

a classifier that can operate on incomplete data cases by augmenting the input representation

with response indicators.

6.1.1 Generative Classifiers

Generative classifiers model the joint distribution of labels and features. If any feature values

are missing they can be marginalized over when classifying data cases. In class conditional

models like the Naive Bayes classifier and Linear Discriminant Analysis, the marginalization

operation can be performed efficiently. Missing data must also be dealt with during learning.

This typically requires an application of the Expectation Maximization algorithm. However,

generative classifiers require making explicit assumptions about the feature space distribution,

while discriminative classifiers do not.

6.1.2 Case Deletion

In case deletion any data case with missing features values is discarded from the data set,

and standard methods for complete data are run on the remaining data cases. Case deletion

discards valuable information about features that are observed, and its use is generally not

recommended [49]. Case deletion can be appropriate if there is a relatively small amount of

missing data, and only complete data cases are permitted at test time. The particular missing

data scenario we are interested in requires the ability to classify incomplete data vectors, so

case deletion can not be applied.

6.1.3 Classification and Imputation

Imputation is a strategy for dealing with missing data that is widely used in the statistical

community. In unconditional mean imputation, the mean of feature d is computed using the

data cases where feature d is observed [49, p.44]. The mean value for feature d is then used as

the value for feature d in data cases where feature d is not observed. In regression imputation, a

set of regression models of missing features given observed features is learned. Missing features

are filled in using predicted values from the learned regression model [49, p. 61].

Regression and mean imputation belong to the class of single imputation methods. In both

cases a single completion of the data set is formed by imputing exactly one value for each

unobserved variable. Multiple imputation is an alternative to single imputation procedures [49,

p. 255]. As the name implies, multiple completions of a data set are formed by imputing several
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values for each missing variable. In its most basic form, the imputed values are sampled from

a simplified imputation model and standard methods are used on each complete data set. The

principal advantage of multiple imputation over single imputation is that multiple imputation

better reflects the variability due to missing values. Sophisticated forms of multiple imputation

are closely related to approximate Bayesian techniques like Markov chain Monte Carlo methods,

and can be viewed as an approximation to integrating out the missing data with respect to an

auxiliary distribution over the feature space.

The key to imputation techniques is selecting an appropriate model of the input space to

sample from. This is rarely the case in single imputation where imputing zeros is common.

A standard practice in multiple imputation is to fit a gaussian distribution to each class, and

sample multiple completions of the missing features conditioned on the observed features. More

flexible imputation models for real valued data are often based on mixtures of Gaussians [75].

In high dimensions, learning a mixture of probabilistic principal components analysis or factor

analysis models may be more appropriate.

The advantage of imputation methods is that they can be used in conjunction with any

complete data classifier. The main disadvantage is that learning one or more imputation mod-

els can be a costly operation. In addition, using multiple imputations leads to maintaining

an ensemble of classifiers at test time. Combining multiple imputation with cross validation

requires training and evaluating many individual classifiers.

6.1.4 Classification in Sub-spaces: Reduced Models

Perhaps the most straightforward method for dealing with missing data is to learn a different

classifier for each pattern of observed values. Sharpe and Solly studied the diagnosis of thyroid

disease with neural networks under this framework, which they refer to as the network reduction

approach [69]. The advantage of this approach is that standard discriminative learning methods

can be applied to learn each model. Sharpe and Solly found that learning one neural network

classifier for each subspace of observed features led to better classification performance than

using neural network regression imputation combined with a single neural network classifier

taking all features as inputs.

As Tresp et al. point out, the main drawback of the reduced model approach is that the

number of different patterns of missing features is exponential in the number of features [75].

In Sharpe and Solly’s case, the data set contained four inputs, and only four different patterns

of missing features, making the entire approach feasible [69, p. 74].
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6.1.5 A Framework for Classification with Response Indicators

An alternative to imputation and subspace classification is to augment the input to a standard

classifier with a vector of response indicators. The input representation x̃n = [xn � rn, rn]

can be thought of as an encoding for xo
n. Here � signifies elementwise multiplication. A

trained classifier can be thought of as computing a decision function of the form f(xo
n). In

logistic regression, multi-layer neural networks, and some kernel-based classifiers, substituting

x̃n for xn is the only modification required. This framework was studied in conjunction with

certain SVM models by Chechik et al. [13], although they focus on the problem of structurally

incomplete data cases. Structurally incomplete data cases arise when certain feature values are

undefined for some data cases. This is semantically different than the missing data we consider

here.

6.2 Linear Discriminant Analysis

In this section we present Linear Discriminant Analysis, and its application to classification

with missing features. We begin by reviewing Fisher’s original conception of Linear Discrimi-

nant Analysis. We then describe the relationship between Fisher’s view and a view based on

maximum probability classification in a class conditional Gaussian model. We discuss several

extensions of LDA including Quadratic Discriminant Analysis (QDA), and Regularized Dis-

criminant Analysis (RDA). We introduce a new method for missing data classification based

on generative training of a linear discriminant analysis model with a factor analysis-style co-

variance matrix. Finally, we present a discriminative training method for the same model that

maximizes the conditional probability of labels given features.

6.2.1 Fisher’s Linear Discriminant Analysis

In the original binary classification setting, Fisher motivates the objective function for linear

discriminant analysis by arguing for two criteria. The first criteria is that the means of the two

classes µ1, µ−1 should be maximally separated by the choice of the discriminant direction w

as expressed in Equation 6.2.1. The second criteria is that the chosen w should minimize the

within-class scatter S of the two classes as expressed in Equation 6.2.2. The definition of the

scatter matrix S is given in Equation 6.2.3 [20] [55, p. 63].

f1(w) = wT (µ1 − µ−1) (6.2.1)

f2(w) = wTSw (6.2.2)
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S =

N∑

n=1

∑

c∈{−1,1}

[yn = c](xn − µc)(xn − µc)
T (6.2.3)

µc =
1

Nc

N∑

n=1

[yn = c]xn (6.2.4)

Fisher proposes choosing w to maximize the objective function shown in Equation 6.2.5,

which is the ratio of the square of mean separation to scatter in the direction w.

f(w) =
f1(w)2

f2(w)
=

wT (µ1 − µ−1)(µ1 − µ−1)
Tw

wTSw
(6.2.5)

To find the best w∗ we must differentiate f(w) with respect to w and solve for w. However,

it is useful to note that the objective function f(w) is invariant to the rescaling of w. As a

result we can always rescale an optimal w such that f2(w) = 1. We can then transform the

optimization of f(w) into a constrained problem with a simplified objective function as seen in

Equation 6.2.6.

w∗ = max
w

wT (µ1 − µ−1)(µ1 − µ−1)
Tw (6.2.6)

st wTSw = 1

To solve the constrained optimization problem we take the derivative of the objective func-

tion, and introduce a Lagrange multiplier along with the derivative of the constraint leading to

equation 6.2.7. Isolating λw under the assumption that S is invertible shows that w is given

by the solution to a generalized eigenvalue problem.

(µ1 − µ−1)(µ1 − µ−1)
Tw − λSw = 0 (6.2.7)

S−1(µ1 − µ−1)(µ1 − µ−1)
Tw = λw (6.2.8)

This problem can be solved by inspection if we note that the result of multiplying any

vector w by the matrix on the left hand side of Equation 6.2.8 is a vector proportional to

S−1(µ1−µ−1). As a result, S−1(µ1−µ−1) is the only eigenvector, and the only possible solution

to the generalized eigenvalue problem. We can thus conclude that w∗ = S−1(µ1 − µ−1).

If we assume that the midpoint between the projections of the two means should separate

the two classes, we can derive a simple formula for the optimal bias term b∗ given the optimal

weight vector w∗as seen in Equation 6.2.9. A data case xn is assigned to class 1 if w∗Txn+b > 0.
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b∗ =
1

2
(w∗T

µ1 + w∗T
µ−1) =

1

2
(µ1 − µ−1)

TS−1(µ1 + µ−1) (6.2.9)

6.2.2 Linear Discriminant Analysis as Maximum Probability Classification

Welch was the first to note that Fisher’s linear discriminant can be derived from the class pos-

terior distribution in a class conditional Gaussian model with shared covariance, and different

means [78]. This approach is more clearly motivated by the idea of maximum probability clas-

sification, and has become the standard derivation for linear discriminant analysis [55, p. 59].

The model is described in Equations 6.2.10 and 6.2.11. The posterior class probability is given

in equation 6.2.12, which we work into a form that depends only on a linear function of the

data.

P (Yn = c) = θc (6.2.10)

P (Xn = xn|Yn = c) = |2πΣ|−1/2 exp

(
−1

2
(xn − µc)

TΣ−1(xn − µc)

)
(6.2.11)

P (Yn = 1|Xn = xn) =
θ1|2πΣ|−1/2 exp

(
−1

2(xn − µ1)
TΣ−1(xn − µ1)

)
∑

c∈−1,1 θc|2πΣ|−1/2 exp
(
−1

2(xn − µc)
TΣ−1(xn − µc)

) (6.2.12)

=
1

1 + exp (wTxn + b)
(6.2.13)

w = (µ1 − µ−1)
TΣ−1 (6.2.14)

b =
1

2
(µ1 − µ−1)

TΣ−1(µ1 + µ−1) +
1

2
log(θ1/θ−1) (6.2.15)

It is now easy to see that the discriminant function P (Yn = c|Xn = xn) > 0.5 is exactly

equivalent to Fisher’s discriminant function in the case where θ1 = θ−1 = 0.5. The fact that

Fisher’s discriminant function is defined in terms of the scatter matrix S as opposed to the

shared covariance matrix Σ makes no difference since the two are related by a scalar constant.

6.2.3 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis is the natural extension of Fisher’s Linear Discriminant to

the case where each class has a different covariance matrix. In this case the class posterior

distribution obviously does not reduce to a linear function of the data. Instead, the decision

surface is quadratic [55, p. 52]. We give the probability model for Quadratic Discriminant

Analysis in equations 6.2.16 and 6.2.17. The class posterior is given in equation 6.2.18. As in

the linear case, the classification rule is to assign a vector xn to the class under which it has

maximum posterior probability.
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P (Yn = c) = θc (6.2.16)

P (Xn = xn|Yn = c) = |2πΣc|−1/2 exp

(
−1

2
(xn − µc)

TΣ−1
c (xn − µc)

)
(6.2.17)

P (Yn = 1|Xn = xn) =
θ1|2πΣc|−1/2 exp

(
−1

2(xn − µ1)
TΣ−1

c (xn − µ1)
)

∑
c∈−1,1 θc|2πΣc|−1/2 exp

(
−1

2(xn − µc)
TΣ−1

c (xn − µc)
) (6.2.18)

6.2.4 Regularized Discriminant Analysis

In this section we discuss regularization strategies for Linear and Quadratic discriminant analy-

sis. The main issue is that computing an accurate estimate of the required covariance matrices

can be difficult when data is high dimensional and scarce. It is well known that the sampling

variation of the standard covariance estimate goes up as the number of data cases goes down,

and that when Nc < D all of the covariance parameters are not identifiable for class c [55, p.

130].

Friedman presents an insightful demonstration of the effect this has on the discrimina-

tion function based on spectral analysis of the covariance matrix [23]. Assume that εd are

the eigenvalues of Σ, and that vd are the corresponding eigenvectors. We have that Σ−1 =
∑D

d=1 vdv
T
d /εd. This shows that the spectral decomposition of Σ−1 is dominated by the smallest

eigenvalues of Σ−1.

Unsupervised Covariance Shrinkage

As Friedman claims, the eigenvalues of the sample covariance matrix tend to have a systematic

bias, with the small eigenvalues biased low, and the large eigenvalues biased high [23]. Not

surprisingly, the first techniques used to regularize covariance matrix estimates were based on

attempts to correct the bias in the eigenvalue spectrum. Regularized estimates of the form

αΣ̂c + βI were introduced to effectively shrink the eigenvalues towards a central value [58].

However, the optimal trade-off between the empirical covariance Σ̂c and the identity matrix

I was sometimes left as an open problem, or set by optimizing a loss function unrelated to

classification performance [55, p. 131].

Supervised Covariance Shrinkage

Friedman introduced the first covariance regularization method for the quadratic case based on

minimizing a cross-validation estimate of prediction error [23] [55, p. 144]. The basic idea is to

shrink the per-class covariance matrices towards the pooled covariance matrix by introducing a

trade-off parameter α. That estimate is further shrunk towards a multiple of the identity matrix
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through the introduction of a second trade-off parameter γ. We give the definition of Friedman’s

per-class covariance matrix estimate in equation 6.2.19 where Σ̂c is the standard estimate of

the per-class covariance matrix, and Σ̂ is the standard estimate of the pooled covariance matrix

[23].

Σc = γ(αΣ̂c + (1− α)Σ̂) +
(1− γ)
D

tr(Σ̂)I (6.2.19)

Friedman performs leave-one-out cross-validation over a grid of possible α and γ values

with classification error as the objective function to choose the optimal α and γ. A specialized

updating procedure is used during training to avoid the otherwise quadratic cost of computing

a new set of covariance estimates when classifying each data case for each value of α and γ.

Restricted Eigen-Decomposition Covariance Models

Bensmail and Celeux introduced a regularization method called Eigenvalue Decomposition Dis-

criminant Analysis that is based on a group of 14 different covariance approximations [6]. Each

approximation is formed by imposing different symmetries on the eigen-decompositions of the

class covariance matrices. Bensmail and Celeux propose a slightly refined eigen-decomposition

of the form Σc = λcVcεcV
T
c where Vc is the matrix of eigenvectors, λc = |Σc|1/D, and εc is

the matrix of eigenvalues normalized such that |εc| = 1. Under this decomposition, λc controls

the volume of the covariance matrix, Vc controls the orientation, and εc controls the shape [6].

The group of models proposed by Bensmail and Celeux includes simpler models of the form

Σc = λcBc for Bc diagonal, and Σc = λcI

Regularization is achieved by tying the parameters of the decompositions across classes. For

example, the model Σc = λcVεcV
T allows the volume and shape to differ across classes, but

restricts the orientation parameters to be the same for all classes. Bensmail and Celeux, like

Friedman, select the single model that minimizes a cross-validation estimate of classification

error [6].

It is interesting to note that Bensmail and Celeux do not consider covariance models based

on retaining only K of the D eigenvalue-eigenvector pairs. It is well known that retaining only

the largest K eigenvalues and eigenvectors of a covariance matrix leads to an optimal rank K

approximation in the squared error sense. This is essentially classical Principal Components

Analysis [43]. Of course, classical PCA can not be directly applied as a covariance approxima-

tion since it results in a singular matrix for K < D. However, this is easily overcome by adding

in a multiple of the identity matrix.

The Probabilistic Principal Components Analysis framework advanced by Tipping and

Bishop and described in Section 4.3 provides just such a covariance approximation. Indeed,
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Tipping and Bishop consider the application of the PPCA covariance approximation to the dis-

criminant analysis problem with complete data, and show that it leads to improved classification

error relative to spherical, diagonal, and full covariance matrices [73, p. 618].

6.2.5 LDA and Missing Data

As a generative model, Linear Discriminant Analysis has a natural ability to deal with missing

input features. The class conditional probability of a data vector with missing input features is

given in Equation 6.2.20. The posterior probability of each class given a data case with missing

features is shown in Equation 6.2.21.

P (Xo
n = xo

n|Yn = c) = |2πΣoo|−1/2 exp

(
−1

2
(xo

n − µo
c)

T (Σoo)−1(xo
n − µo

c)

)
(6.2.20)

P (Y = c|Xo
n = xo

n) =
θc|2πΣoo|−1/2 exp

(
−1

2(xo
n − µo

c)
T (Σoo)−1(xo

n − µo
c)
)

∑
c θc|2πΣoo|−1/2 exp

(
−1

2(xo
n − µo

c)
T (Σoo)−1(xo

n − µo
c)
) (6.2.21)

Maximum Likelihood Estimation

The maximum likelihood estimate of the mean parameters is computed from incomplete data

as shown in Equation 6.2.22.

µdc =

∑N
n=1[yn = c][rdn = 1]xdn∑N

n=1[yn = c][rdn = 1]
(6.2.22)

The parameters of the full covariance matrix can be estimated using the Expectation Maxi-

mization algorithm. However, when data vectors are high dimensional and there are a relatively

small number of data cases, it is preferable to use a structured covariance approximation. A

variety of structured covariance approximations were discussed in Section 6.2.4. We choose to

use a factor analysis-like covariance matrix of the form ΛΛT + Ψ with Ψ diagonal. We call this

model LDA-FA for Linear Discriminant Analysis with Factor Analysis covariance. The factor

analysis covariance model is slightly more general than the PPCA covariance model used by

Tipping and Bishop in their LDA experiments [73, p. 618]. Note that while Tipping and Bishop

also consider learning PPCA models with missing data, they do not consider the simultaneous

application of PPCA to linear discriminant analysis with missing data.

The factor analysis covariance parameters are learned by first centering the training data

by subtracting off the appropriate class mean as seen in Equation 6.2.23, and then applying the

Expectation Maximization algorithm for factor analysis with missing data as derived in Section

4.3.2. The dimensionality of the latent factors Q is a free parameter that must be set using

cross validation.
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x̂dn =
C∑

c=1

[yn = c][rdn](xdn − µdc) (6.2.23)

6.2.6 Discriminatively Trained LDA and Missing Data

One of the main drawbacks of generatively trained classification methods is that they tend

to be very sensitive to violations of the underlying modeling assumptions. In this section we

consider a discriminative training procedure for the LDA-FA model described in the previous

section. The main insight is that we can fit the LDA-FA model parameters by maximizing the

conditional probability of the labels given the incomplete features instead of maximizing the

joint probability of the labels and the incomplete features. This training procedure is closely

related to the minimum classification error factor analysis algorithm introduced by Saul and

Rahim for complete data [66].

The posterior class probabilities given an incomplete feature vector are again given by

Equation 6.2.21. The objective function used during training is the conditional log likelihood

as shown in Equation 6.2.24.

L =
N∑

n=1

C∑

c=1

[yn = c] log(P c
n) (6.2.24)

P c
n =

Ac
n∑

c′ A
c′
n

Ac
n = θc|2πΣoo|−1/2 exp

(
−1

2
(xo

n − µo
c)

T (Σoo)−1(xo
n − µo

c)

)

Conditional Maximum Likelihood Estimation

We derive a maximum conditional likelihood learning algorithm for the LDA-FA model in this

section. We optimize the average conditional log likelihood with respect to the parameters

θ, µ, Λ, and Ψ using non-linear optimization. We first transform the parameters θ and Ψ to

eliminate constraints. θ represent the parameters of a discrete distribution with normalization

and positivity constraints, while ψii simply has to be positive since it is a variance parameter.

We use the mappings shown below.

Ψii = exp(φii) θc =
exp(ωc)∑
c exp(ωc)

We begin by computing the partial derivative of the conditional log likelihood with respect
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to the current posterior class probabilities P k
n , and the partial derivative of the posterior class

probability with respect to Ak
n.

∂L
∂P k

n

= [yn = k]
1

P k
n

∂P k
n

∂P k
n

∂Al
n

=

(
[k = l]∑

k A
k
n

− Ak
n

(
∑

k A
k
n)

2

)
∂Al

n (6.2.25)

We compute the partial derivative of Al
n with respect to θj , and the partial derivative of θj

with respect to ωc. We use the chain rule to find the partial derivative of the conditional log

likelihood with respect to ωc.

∂Al
n

∂θj
= [l = j]

Al
n

θj
(6.2.26)

∂θj

∂ωc
= [j = c]θc − θjθc (6.2.27)

∂L
∂ωc

=
N∑

n=1

C∑

k=1

C∑

l=1

C∑

j=1

∂L
∂P k

n

∂P k
n

∂Al
n

∂Al
n

∂θj

∂θj

∂ωc

=
N∑

n=1

C∑

k=1

C∑

l=1

C∑

j=1

[yn = k]
1

P k
n

(
[k = l]∑

k A
k
n

− Ak
n

(
∑

k A
k
n)

2

)
([j = c]θc − θjθc)

=
N∑

n=1

C∑

c=1

([yn = c]− P c
n) (6.2.28)

We compute the partial derivative of Al
n with respect to µc, and use the chain rule to

find the partial derivative of the conditional log likelihood with respect to µc. The projection

matrix Ho
n was introduced in Section 1.2.1. Recall that Ho

n projects the observed dimensions

of xo
n back into D dimension such that the missing dimensions are filled in with zeros. These

projection matrices arise naturally when taking the derivative of a sub-matrix or sub-vector

with respect to a full dimensional matrix or vector. Also recall that on refers to the vector of

observed dimensions for data case xn such that oin = d if d is the ith observed dimension of xn.

∂Al
n

∂µ
on
c

= [l = c]Ac
n(−1

2
)
(
2(Σonon)−1(µon

c − xon
n )
)

(6.2.29)

∂µ
on
c

∂µc

= Ho
n, Ho

ijn = [ojn = i] (6.2.30)
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∂L
∂µc

=

N∑

n=1

C∑

k=1

∂L
∂P k

n

C∑

l=1

∂P k
n

∂Al
n

∂µ
on
c

∂µc

∂Al
n

∂µ
on
c

=
N∑

n=1

C∑

k=1

[yn = k]
1

P k
n

C∑

l=1

(
[k = l]∑

k A
k
n

− Ak
n

(
∑

k A
k
n)

2

)
[l = c](−Ac

n)Ho
n(Σonon)−1(µon

c − xon
n )

=
N∑

n=1

1

P yn
n

(
[yn = c]∑

k A
k
n

− Ayn
n

(
∑

k A
k
n)

2

)
Ho

n(−Ac
n)(Σonon)−1(µon

c − xon
n )

=
N∑

n=1

([yn = c]− P c
n)Ho

n(Σonon)−1(xon
n − µ

on
c ) (6.2.31)

We compute the partial derivative of Al
n with respect to Σonon , the partial derivative of

Σonon with respect to Σ, and the partial derivative of Σ with respect to Λ. We apply the chain

rule to obtain the partial derivative of the conditional log likelihood with respect to Λ.

∂Al
n

∂Σonon
=

1

2
Al

n

(
(Σonon)−1(µon

l − xon
n )(µon

l − xon
n )T (Σonon)−1 − (Σonon)−1

)
(6.2.32)

∂Σonon

ij

∂Σst
= [oin = s][ojn = t] (6.2.33)

∂Σst

∂Λab
= [s = a]Λtb + [t = a]Λsb (6.2.34)

∂Σonon

ij

∂Λab
=

D∑

s=1

D∑

t=1

[oin = s][ojn = t] ([s = a]Λtb + [t = a]Λsb)

= [oin = a]
D∑

t=1

[ojn = t]Λtb + [ojn = a]
D∑

s=1

[oin = s]Λsb (6.2.35)

∂Al
n

∂Λab
=

Dn∑

i=1

Dn∑

j=1

∂Al
n

∂Σonon

ij

∂Σonon

ij

∂Λab

=

Dn∑

i=1

Dn∑

j=1

∂Al
n

∂Σonon

ij

(
[oin = a]

D∑

t=1

[ojn = t]Λtb + [ojn = a]
D∑

s=1

[oin = s]Λsb

)

= 2

Dn∑

i=1

Dn∑

j=1

∂Al
n

∂Σonon

ij

[oin = a]
D∑

t=1

[ojn = t]Λtb

= 2
D∑

t=1




Dn∑

i=1

Dn∑

j=1

[oin = a]
∂Al

n

∂Σonon

ij

[ojn = t]


Λtb
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∂Al
n

∂Λ
= 2Ho

n

∂Al
n

∂Σonon

ij

(Ho
n)TΛ (6.2.36)

∂L
∂Λ

=
N∑

n=1

C∑

k=1

∂L
∂P k

n

C∑

l=1

∂P k
n

∂Al
n

∂Al
n

∂Λ

=
N∑

n=1

C∑

k=1

[yn = k]
1

P k
n

C∑

l=1

(
[k = l]∑

k A
k
n

− Ak
n

(
∑

k A
k
n)

2

)
(6.2.37)

·Ho
n

(
Al

n

(
(Σonon)−1(µon

l − xon
n )(µon

l − xon
n )T (Σonon)−1 − (Σonon)−1

))
(Ho

n)TΛ

=
N∑

n=1

C∑

c=1

([yn = c]− P c
n)
(
Ho

n(Σonon)−1(µon
c − xon

n )(µon
c − xon

n )T (Σonon)−1(Ho
n)T

−Ho
n(Σonon)−1(Ho

n)T
)
Λ (6.2.38)

Finally, we compute the partial derivative of the conditional log likelihood with respect to

φ by computing the partial derivative of Σ with respect to φ and applying the chain rule.

∂Σst

∂φaa
= [s = a][t = a]Ψaa (6.2.39)

∂Σonon

ij

∂φaa
=

D∑

s=1

D∑

t=1

[oin = s][ojn = t][s = a][t = a]Ψaa = [oin = a][ojn = a]Ψaa (6.2.40)

∂Al
n

∂φaa
=

Dn∑

i=1

Dn∑

j=1

∂Al
n

∂Σonon

ij

∂Σonon

ij

∂Φaa
=

Dn∑

i=1

Dn∑

j=1

∂Al
n

∂Σonon

ij

([oin = a][ojn = a])Ψaa (6.2.41)

∂Al
n

∂φ
= diag

(
Ho

n

∂Al
n

∂Σonon

ij

(Ho
n)T
)
Ψ (6.2.42)

∂L
∂φ

=
N∑

n=1

C∑

k=1

∂L
∂P k

n

C∑

l=1

∂P k
n

∂Al
n

∂Al
n

∂φ

=
1

2

N∑

n=1

C∑

c=1

([yn = c]− P c
n)diag

(
Ho

n(Σonon)−1(µon
c − xon

n )(µon
c − xon

n )T (Σonon)−1(Ho
n)T

−Ho
n(Σonon)−1(Ho

n)T
)
Ψ (6.2.43)

In addition to controlling the complexity of the classifier through the latent dimensionality

of the covariance model, it can also be useful to apply the equivalent of weight decay. The hy-

perplane separator for class c is given by µc
T Σ. Instead of regularizing µc and Σ independently,

we can regularize the norm of the hyperplane using an L2 penalty of the form −0.5λµc
T ΣΣµc.

The additional gradient terms can easily be computed.
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Simple Mix Overlap

Loss Err(%) Loss Err(%) Loss Err(%)

LDA-FA Gen 0.0449 1.75 0.3028 20.50 0.2902 13.50

LDA-FA Dis 0.0494 2.00 0.0992 3.25 0.2886 13.75

Table 6.1: Summary of illustrative results for generative and discriminatively trained LDA-FA
models. We report the log loss (average negative log probability of the correct class), as well
as the average classification error.

6.2.7 Synthetic Data Experiments and Results

Experiments were performed on three synthetic data sets to illustrate the properties of genera-

tive and discriminative training for the LDA-FA model. The first data set was sampled from a

class conditional Gaussian model with equal class proportions, class means located at [-1.5,-1.5]

and [1.5,1.5], and spherical covariance matrix with variance 0.5. 100 training cases were sam-

pled from each class for training, and a separate set of 200 cases from each class was sampled

for testing. Missing data was created by randomly sampling the three response patterns [1, 1],

[0, 1], and [1, 0] each with probability 1/3. We refer to this as the “Simple” data set. It is

pictured in Figure 6.1(a).

The second data set was sampled from a class condition model where one class is Gaussian

with mean [−2,−2], and the other class is a mixture of Gaussians with one mean at [−1,−1],

and the other mean at [2, 2]. A spherical covariance matrix with variance 0.1 was used for both

classes. A total of 100 training cases were sampled from each class for training, and a separate

set of 200 cases from each class was sampled for testing. Missing data was created by randomly

sampling the three response patterns [1, 1], [0, 1], and [1, 0] each with probability 1/3. We refer

to this as the “Mix” data set. It is pictured in Figure 6.1(d).

The third data set was sampled from a class condition Gaussian model with one class mean

at [−0.3, 0.8], and the other class mean at [0.3,−0.8]. A full covariance matrix was used with

variance terms equal to 0.5, and covariance terms equal to 0.45. 100 training cases were sampled

from each class for training, and a separate set of 200 cases from each class was sampled for

testing. Missing data was created by randomly sampling the three response patterns [1, 1],

[0, 1], and [1, 0] each with probability 1/3. We refer to this as the “Overlap” data set. It is

pictured in Figure 6.1(g).

The generative LDA-FA learning algorithm has one free parameter: the dimensionality of

the latent space. In the experiments that follow we fix the latent dimensionality in both the

generative and discriminative learning procedures to one since this setting is sufficient to learn

any two dimensional covariance matrix. The regularization parameter in the discriminative

training algorithm is set by a five fold cross validation search over the range 10−2 to 10−5.
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Figure 6.1: The first column of figures shows the training data. The second column of figures
shows the classification function learned by the generatively trained LDA-FA model. The third
column of figures shows the classification function learned by the discriminatively trained LDA-
FA model. Data cases missing the horizontal dimension are shown in the left panel in each figure.
Data cases missing the vertical dimension are shown in the bottom panel. Complete data cases
are shown in the main panel. Both discriminative and generative training perform well on the
Simple data set shown in the first row of figures. The Mix data set shown in the second row
of figures violates the LDA generative model assumptions. Generative training performs very
poorly on the data set while discriminative training does much better. The Overlap data set
shown in the third row is fundamentally difficult because the two classes overlap when either
data dimension is missing.
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Each method was run for a maximum of 1000 training iterations.

The results are presented in Figure 6.1 and summarized in Table 6.1. The first column

in Figure 6.1 shows a plot of each training set. Data cases missing the horizontal dimension

are shown in the left panel in each figure. Data cases missing the vertical dimension are

shown in the bottom panel. Complete data cases are shown in the main panel. The second

column in Figure 6.1 shows the classification function learned by the generatively trained LDA-

FA model. The third column in Figure 6.1 shows the classification function learned by the

discriminatively trained LDA-FA model. The intensity of the plot represents the conditional

probability P (y|x). The dark contour line represents P (y|x) = 0.5. The two lighter contour

lines represent P (y|x) = 0.25 and P (y|x) = 0.75.

The results show that both discriminative and generative training perform well on the Simple

data set. The Mix data set violates the class conditional Gaussian assumption underlying

the LDA-FA generative model. Generative training performs very poorly on the data set.

Discriminative training obtains an error rate that is nearly six times lower than generative

training, and a loss that is three times lower. The Overlap data set is fundamentally more

difficult than the Simple and Mix data sets due to the fact that there is large overlap between

the classes when either data dimension is missing. In such cases no classifier can perform well.

6.3 Logistic Regression

Logistic Regression is a statistical method for modeling the relationship between a binary or

categorical class variable, and a vector of features variables or covariates. The name logistic

regression comes from the use of the logistic function f(x) = 1/(1+exp(−x)) as a map from the

real line to the interval [0, 1]. In this section we review binary and multi-class logistic regression

including model fitting, regularization, and the relationship between Logistic Regression and

Linear Discriminant Analysis. We consider the application of logistic regression with missing

data in conjunction with imputation, reduced models, and the response indicator framework.

6.3.1 The Logistic Regression Model

In the two class case the linear logistic regression model takes the form shown in equation 6.3.1

where w is a D dimensional vector referred to as the weight vector, and b is a scalar referred

to as the bias [40, p. 31]. The multi-class case generalizes the binary case by introducing one

weight vector wc and bias bc for each class [40, p. 260] [55, p. 255]. Without loss of generality

we may assume that wC = 0 and bC = 0 since the multiclass logistic regression model is over-

parameterized when C distinct sets of parameters are used. We give the multi-class model in

equation 6.3.2.
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P (Y = 1|X = xn) =
1

1 + exp(−(wTxn + b))
(6.3.1)

P (Y = c|X = xn) =
exp(wT

c xn + bc)∑C
c′=1 exp(wT

c′xn + bc′)
(6.3.2)

In the binary case, the negative log probability of a single observation can also be expressed

in terms of the logistic loss function as shown in equation 6.3.3 [68, p. 63].

− logP (Y = yn|X = xn) = − log

(
[yn = 1] + [yn = −1] exp(−(wTxn + b))

1 + exp(−(wTxn + b))

)

= − log

(
1

1 + exp(−yn(wTxn + b))

)

= log(1 + exp(−yn(wTxn + b)) (6.3.3)

6.3.2 Maximum Likelihood Estimation for Logistic Regression

Maximum likelihood estimation is the standard approach to estimating parameters for logistic

regression. Equation 6.3.4 shows the log likelihood function for logistic regression. Maximizing

the likelihood function involves solving a set of gradient equations. We derive the gradient with

respect to wk and bk in Equations 6.3.5 to 6.3.9. We introduce the notation pcn = P (Y =

c|X = xn) to simplify the derivation.

L =
N∑

n=1

C∑

c=1

[yn = c] log(pcn) (6.3.4)

∂L
∂pcn

= 1/pcn (6.3.5)

∂pcn

∂wk
= (pcnpkn − [c = k]pcn)xn (6.3.6)

∂L
∂wk

=
N∑

n=1

C∑

c=1

[yn = c](1/pcn)(pcnpkn − [c = k]pcn)xn =
N∑

n=1

(pkn − [yn = k])xn (6.3.7)

∂pcn

∂bk
= (pcnpkn − [c = k]pcn) (6.3.8)

∂L
∂bk

=
N∑

n=1

C∑

c=1

[yn = c](1/pcn)(pcnpkn − [c = k]pcn) =
N∑

n=1

(pkn − [yn = k]) (6.3.9)

Maximizing the likelihood function requires the use of an iterative, non-linear optimization

algorithm since a closed form solution of the gradient equations is not possible. Conjugate
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gradient methods have the advantage of only needing the first order derivatives given above.

A Newton-Raphson method also requires the matrix of second derivatives. The log likelihood

function for linear logistic regression is strictly convex. The likelihood equations have a unique,

finite-valued solution except for a small number of special cases related to a lack of overlap

between the class distributions [1, p. 195] [55, p. 264 ]. Details can be found in Agresti [1, p.

194], Hosmer and Lemeshow [40, p. 263 ], and Mclachlan [55, p. 263 ].

6.3.3 Regularization for Logistic Regression

Regularization is an important issue when learning logistic regression parameters. The two

main regularizers used with logistic regression are L2 regularization and L1 regularization. L2

regularized logistic regression has the advantage that the derivatives of the regularized objective

function remain continuous. This means that standard, unconstrained optimization methods

can still be used to find the optimal weight vector. On the other hand, the L1 regularized

logistic regression objective function has discontinuous gradients if any component of the weight

vector is 0. This means that standard, unconstrained optimization methods can not be reliably

applied.

An advantage of L1 regularized logistic regression over L2 is that the L1 penalty tends to

set weight parameters exactly to zero, while the L2 penalty does not. This means that the

L1 regularizer is accomplishing both feature selection and regularization simultaneously. For

example, Ng demonstrated that the L1 logistic regression formulation performs much better

than L2 logistic regression in situations with many irrelevant features [61]. Tibshirani notes

that in the linear regression case L1 performs better than L2 when there are a small number of

large effects, and a moderate number of moderate effects [72]. In both cases the L1 penalty is

able to ignore irrelevant or low-quality features.

These are important properties in machine learning where large-scale problems with many

features of unknown quality are considered. As a result, several specialized methods for solving

L1 regularized logistic regression have been proposed. Boyd has proposed a customized interior

point method [8]. Lee et al. present a method based on a modification of iteratively re-weighted

least squares [48]. Andrew and Gao present a modified limited-memory quasi-Newton method

suitable for very large problems [4].

6.3.4 Logistic Regression and Missing Data

In this section we discuss the application of imputation, reduced models, and the response

indicator framework to linear logistic regression with missing data.
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Imputation

The application of zero imputation and mean imputation is straightforward. To apply multiple

imputation using S imputations per data case we first learn S separate imputation models

P s(x) from the incomplete training data set xo
n, n = 1, ..., N . For each data case n and each

imputation model s we compute P s(xm
n |xo

n), and sample a value for xm
ns to form the complete

training data case xns = [xo
n,x

m
ns]. Note that we could also learn a single imputation model and

draw S samples from that single model. We choose to learn multiple imputation models to help

address the problem of multiple modes when learning imputation models such as mixtures.

For each of the S imputed data sets we learn a separate logistic regression model of the

form P s(y|x). To classify a novel incomplete data case xo
∗, we sample S completions of the

data case x∗s, s = 1, ..., S. We compute the predictive distribution P s(y|x∗s) under each of

the S imputation models, and average them together to obtain the final imputation predictive

distribution P (y|xo
∗).

P (y|xo
∗) =

1

S

S∑

s=1

P s(y|x∗s) (6.3.10)

When combining multiple imputation with cross validation we learn the imputation models,

and sample the imputed data sets before applying cross validation. This shortcut saves a large

amount of computation. The imputation models learned before splitting the data into cross

validation sets will tend to be somewhat more accurate than imputation models learned for

a particular cross validation fold, since there is more training data available in the first case.

However, the imputation models do not have access to labels during training, and the complete

multiple imputation learning procedure could be viewed as a form of transductive learning.

Williams et al. introduced a scheme for incomplete data classification in a probit regression

model that closely approximates logistic regression. The advantage of the probit link function

is that is allows an approximation to analytically integrating over missing data with respect to

an auxiliary Gaussian mixture feature space model [79]. However, the approach can only be

applied in the binary classification setting, a limitation that does not apply to general multiple

imputation.

Reduced Models

The application of reduced models to logistic regression is again straightforward. One important

detail is that during training of a particular reduced model corresponding to the response

pattern r, we include data case n in the training set if for all d where rd = 1, rdn = 1. In other
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words, we include as training data all cases that match the response pattern exactly, as well as

all cases that match the response pattern, and have additional dimensions observed. Of course,

the model for response pattern r is trained only on the dimensions where rd = 1. At test time

we compute the predictive distribution for a novel data case xo
∗ using the reduced model that

corresponds exactly to the novel data case’s response pattern r∗.

Response Indicator Framework

The response indicator framework can be applied to linear logistic regression by providing it

with data vectors of the form x̃ = [x� r, r]. The resulting model for P (Y = 1|x, r) is given in

equation 6.3.11 where wd is the weight on feature d, vd is the weight on response indicator rd,

and b is the bias. The objective function used to train the model is given in equation 6.3.12. It

is easy to see that unobserved dimensions of x do not contribute to the classification function,

or the objective function.

P (Y =1|x, r) =
1

1 + exp(−(b+
∑D

d=1 rd(wdxdn + vd))
(6.3.11)

F =
N∑

n=1

log(1 + exp(−yn(b+
D∑

d=D

rd(wdxnd + vd))) + λ(wTw + vTv) (6.3.12)

Learning the parameters of the response augmented logistic regression model is straightfor-

ward, and can be accomplished using any first or second order non-linear optimization method.

Note that the optimization problem remains convex.

6.3.5 An Equivalence Between Missing Data Strategies for Linear Classifi-

cation

Anderson was likely the first to note that the logistic regression model is much more general than

the linear discriminant analysis model since it can also exactly represent the posterior of several

other model classes [3] [55, p. 256]. Jordan showed that all exponential family models with

shared dispersion parameters lead to class posteriors that can be represented exactly by linear

logistic regression [44]. Banerjee has proven that the log-odds ratio of the class posteriors will

be linear if and only if the class conditional distributions belong to the same exponential family,

yielding a full characterization of the posterior distributions representable by logistic regression

[5]. This implies that logistic regression and linear discriminant analysis are equivalent when

the assumptions underlying LDA are satisfied. In fact, some early work on multivariate logistic

regression models used linear discriminant estimates due to computational requirements of
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obtaining direct estimates of the logistic regression model parameters [40, p. 43].

The relationship between logistic regression and linear discriminant analysis extends to the

missing data setting as well. Under the class conditional gaussian/shared covariance assump-

tion, the predictive distribution obtained from linear disclaimant analysis is asymptotically

equivalent to the predictive distribution given by a combination of logistic regression and re-

duced models.

The true predictive distribution in a particular sub-space is given by P (Y = y|xo). Un-

der the class conditional Gaussian/shared covariance assumption the predictive distribution is

calculated as seen below.

P (Y = y|xo) =

∫
xm P (xo,xm|Y = y)P (Y = y)dxm

∑
y

∫
xm P (xo,xm|Y = y)P (Y = y)dxm

(6.3.13)

=
P (xo|Y = y)P (Y = y)∑
y′ P (xo|Y = y′)P (Y = y′)

(6.3.14)

=
N (xo;µo

y,Σ
oo)P (Y = y)∑

y′ N (xo;µo
y′ ,Σoo)P (Y = y′)

(6.3.15)

Since the LDA parameter estimates are asymptotically unbiased, the estimated predictive

distribution PLDA(Y = y|xo, µ̂, Σ̂) will be equal to the true predictive distribution in the limit.

We know that logistic regression can exactly represent the predictive distribution of any class

conditional Gaussian model with shared covariance, and that the logistic regression objective

function is convex. As a result, the predictive distribution P LR(Y = y|xo, ŵ, b̂) learned in each

observed data subspace will also be equal to the true predictive distribution in the limit.

Of course, when the class conditional Gaussian/shared covariance assumption is violated

the two approaches can lead to very different predictive distributions. The generative linear

discriminants approach makes much more stringent assumptions about the structure of the

input space, while the logistic regression/reduced models approach makes no such assumptions.

6.3.6 Synthetic Data Experiments and Results

Illustrative experiments comparing different strategies for missing data classification with linear

logistic regression were performed using the “Simple”, “Mix”, and “Overlap” data sets intro-

duced in Section 6.2.7. We compare logistic regression combined with zero imputation, mean

imputation, multiple imputation, reduced models, and the response indicator framework. The

imputation model used is a mixture of factor analyzers with latent dimensionality Q = 1. We

present results using one, two, and three mixture components. For each data set and each

number of mixture components we learn five separate imputation models using the Expecta-
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Figure 6.2: This figure shows results for the Simple data set based on several missing data
methods combined with logistic regression. Missing data methods include zero imputation,
mean imputation, multiple imputation, reduced models, and response indicator augmentation.
The results show that zero imputation and mean imputation can perform well if they result in
nearly separable configurations in the original feature space. The multiple imputation results
illustrate the fact that the imputation model can be incorrect (K = 1), yet still give good
estimates of the conditional densities P (xm|xo

n).
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Figure 6.3: This figure shows results for the Mix data set based on several missing data
methods combined with logistic regression. Missing data methods include zero imputation,
mean imputation, multiple imputation, reduced models, and response indicator augmentation.
The results show that zero imputation and mean imputation perform poorly when they result
in non-separable configurations in the original feature space. The multiple imputation results
again show that the imputation model can be incorrect (K = 1), yet still give good estimates of
the conditional densities P (xm|xo

n). The response augmented model result shows that learning
an optimal axis aligned embedding can be superior to mean imputation.
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Figure 6.4: This figure shows results for the Overlap data set based on several missing data
methods combined with logistic regression. Missing data methods include zero imputation,
mean imputation, multiple imputation, reduced models, and response indicator augmentation.
The results show that when the classes are highly overlapping when a data dimensions is missing,
no missing data method can perform well including multiple imputation methods.
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Simple Mix Overlap

Loss Err(%) Loss Err(%) Loss Err(%)

LR Zero 0.0463 1.75 0.3336 14.50 0.3137 13.75

LR Mean 0.0470 1.75 0.1693 6.50 0.3139 13.50

LR Mix K=1 0.0687 2.00 0.1053 3.75 0.3940 17.75

LR Mix K=2 0.0655 1.50 0.1052 2.50 0.4098 19.00

LR Mix K=3 0.0501 1.00 0.1038 3.50 0.4067 15.00

LR Reduced 0.0433 1.75 0.0746 2.75 0.2926 13.50

LR Augmented 0.0498 2.00 0.1019 3.25 0.3180 13.75

Table 6.2: Summary of illustrative results for linear logistic regression with missing data includ-
ing, zero imputation, mean imputation, multiple imputation with mixtures of factor analyzers,
reduced models, and response vector augmentation. We report the log loss (average negative
log probability of the correct class), as well as the average classification error.

tion Maximization algorithm. We sample one value of xm
n given xo

n for each data case n and

each imputation model. We regularize the logistic regression model using an L2 penalty on the

weights. The regularization trade off parameter is set by a five fold cross validation over the

range 10−2 to 10−5. Each method was run for a maximum of 1000 training iterations.

The classification functions learned using each method are shown in Figures 6.2, 6.3, and 6.4

for the Simple, Mix, and Overlap data sets respectively. The results are summarized in Table

6.2. The results on the Simple data set show that all methods achieve very similar classification

performance. The fact that zero imputation performs as well as the more sophisticated methods

is due to the fact that when missing data is embedded along the axes, the Simple data set is

nearly linearly separable in the original feature space. A similar argument applies to mean

imputation for the Simple data set. The multiple imputation results show much smoother

classification functions than any of the other methods. This results from a combination of noise

due to sampling variation in the imputations, as well as from the fact that each classification

function results from an ensemble of logistic regression classifiers. The multiple imputation

results also show that multiple imputation can perform well even if the imputation model is

incorrect. There is little difference in the classification functions based on a one component

factor analysis model, and a two component factor analysis mixture. The reason for this

behaviour is explained by the fact that if a single Gaussian is used to explain both clusters in

the Simple training data set, the conditional densities P (xm|xo
n) are approximately correct for

most data cases, even though a two component mixture gives a much better fit to the data.

The Mix data set clearly illustrates the problems that can result when zero imputation and

unconditional mean imputation are used. In the Mix data set, embedding missing data along

the axes in the original feature space interferes with the data cases that are fully observed.

The same problem occurs when mean imputation is used, although embedding missing data
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cases along the mean values is somewhat better than embedding along the axes. Multiple

imputation again works well with one, two, or three clusters. The explanation is the same as

for the Simple data set: the conditional densities P (xm|xo
n) are correct for most data points.

Comparing the response indicator framework to unconditional mean estimation shows that the

two are not equivalent. The response indicator framework essentially learns the optimal axis

aligned embedding of the missing data at the same time it learns the classification function.

This results in improved accuracy relative to unconditional mean estimation.

The Overlap data set again illustrates the fact that if the classes overlap significantly when

some data dimensions are missing, no classification method can perform well. Any axis aligned

embedding of the missing data into the original feature space results in a highly non-separable

arrangement of data points. This adversely affects zero imputation, mean imputation, and the

response indicator framework. Even when an appropriate number of mixture components are

used, the conditional densities P (xm|xo
n) are highly bimodal for most data cases. Sampling will

place data points in one cluster or the other essentially at random.

6.4 Perceptrons and Support Vector Machines

Both Linear Discriminant Analysis and Logistic Regression are examples of hyperplane clas-

sifiers. A potential drawback of these methods is that neither directly optimizes classification

error as an objective function. Linear discriminant analysis optimizes the joint probability of

features and labels, while logistic regression optimizes the conditional probability of labels given

features. In this section we review perceptrons and support vector machines. The classical per-

ceptron is a hyperplane classifier that attempts to directly minimize classification error. The

support vector machine is a hyperplane classifier that selects an optimal hyperplane by trading

off classification error against a complexity penalty.

6.4.1 Perceptrons

The perceptron is a binary linear classifier that chooses a hyperplane by directly optimizing

classification error, as seen in Equation 6.4.1 [63]. The original perceptron learning rule intro-

duced by Rosenblatt is a stochastic gradient descent algorithm [63]. Data cases are presented

one at a time, and the corrections to the parameters shown in Equation 6.4.2 is made if the

current data case is misclassified. The parameter α is a learning rate.
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fPct(w, b) =
N∑

n=1

1

2
|yn − sgn(wTxn + b)| (6.4.1)

w← w + αynxn (6.4.2)

b← b+ αyn (6.4.3)

The algorithm is run until a pass through the complete training set results in no updates

to the parameters. The interpretation of the single-layer perceptron in terms of a separating

hyperplane, along with the limitations this implied, was only understood later by Minsky and

Papert [56].

Rosenblatt’s perceptron learning algorithm is guaranteed to converge in a finite number of

steps if the training data is linearly separable [32, p. 108]. However, the solution that is returned

is essentially an arbitrary member of the set of all hyperplanes yielding perfect classification

of the training data. The hyperplane obtained when the perceptron learning algorithm halts

depends on the initial parameter values, as well as the order in which that training cases are

presented. The non-uniqueness of the solution in the separable case can be eliminated by

requiring that the hyperplane satisfy additional optimality constraints. This is the approach

taken by the support vector machine classifier discussed in the following section.

If the training data is not linearly separable the perceptron learning algorithm will not

converge, and cycles will develop in the parameter values. Several methods have been developed

to deal with the problem of non-separable training sets including Freund and Schapire’s voted

perceptron method [21], and the soft margin support vector machine.

6.4.2 Hard Margin Support Vector Machines

As mentioned in the previous section, there is an infinite set of hyperplanes that can perfectly

classify a separable data set. The hyperplane returned by the perceptron learning rule is

essentially a random member of this set. The optimal separating hyperplane, as defined by

Vapnik, is the one that maximizes the minimum distance of any training data point to the

separating hyperplane as seen in equation 6.4.4 [76].

Since the same decision rule results if the parameters w and b are multiplied by a constant,

any scaling of the optimal w can be used. In this case w and b are scaled such that ||w|| = 1.

Equation 6.4.5 gives an alternate formulation for the optimal hyperplane problem. The utility

of this formulation is that it is a standard, convex quadratic optimization problem subject to

linear constraints.
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fP
H (w, b) = max

w,b
min

n
yn(wTxn + b) ... st ||w|| = 1 (6.4.4)

= min
w,b

1

2
||w||2 ... st ∀n yn(wTxn + b) ≥ 1 (6.4.5)

6.4.3 Soft Margin Support Vector Machines

The main issue with the hard margin formulation of the support vector machine is that it is

only useful in the case where the data is perfectly separable. One solution to this problem is

to modify the constraints in equation 6.4.5 to the form yn(wTxn + b) ≥ (1 − ηn) where ηn is

a non-negative slack variable [32, p. 373]. This essentially relaxes the constraints, and ensures

that the primal optimization problem always has a feasible solution. Penalizing the use of slack

leads to the optimization problem in Equation 6.4.6. S is a free tradeoff parameter.

fS(w, b,η) = min
w,b

1

2
||w||2 + S

N∑

n=1

ηn ... st ∀n yn(wTxn + b) ≥ (1− ηn), ηn > 0 (6.4.6)

6.4.4 Soft Margin Support Vector Machine via Loss + Penalty

The standard derivation for the soft margin support vector machine tends to obscures the rela-

tionship between the support vector machine and logistic regression. The soft margin support

vector machine can also be derived in an alternative regularization framework using a partic-

ular loss function and penalty term [32, p. 380]. As we noted previously, regularized logistic

regression can be derived from a combination of the logistic loss function shown in equation

6.3.3, and an L1 or L2 penalty term on the weight vector. The soft margin support vector

machine can be derived from a combination of the hinge loss shown in equation 6.4.7, and an

L2 penalty on the weight vector.

LH(yn,w
Txn + b) = [1− yn(wTxn + b)]+ (6.4.7)

[a]+ = max(a, 0); (6.4.8)

The primal objective function is given in Equation 6.4.9. Since the loss term is discontinuous

this optimization problem is difficult to solve directly. In the second step below we introduce

a set of auxiliary variables ηn to represent the value of the hinge loss function for each data

case. We constrain these variables to be exactly equal to the corresponding hinge loss values.

The formulation now has a continuous objective function with the discontinuity moved into

the constraints. In the final step we recognize that the equality constraints can be replaced by
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linear inequality constraints, and that the larger of the two inequalities will be saturated at the

minimum. If that was not the case we could lower the value of ηn for some n and reduce the

objective function further, contradicting the fact that we are at a minimum.

fS′(w, b) = min
w,b

N∑

n=1

[1− yn(wTxn + b)]+γ||w||2 (6.4.9)

fS′(w, b,η) = min
w,b,η

N∑

n=1

ηn + γ||w||2

st ∀n ηn =

{
1− yn(wTxn + b) ... 1− yn(wTxn + b) > 0

0 ... 1− yn(wTxn + b) ≤ 0
(6.4.10)

= min
w,b

N∑

n=1

ηn + γ||w||2 ... st ∀n ηn ≥ 1− yn(wTxn + b), ηn ≥ 0 (6.4.11)

It is easy to see that the final form of the optimization problem derived from Equation 6.4.9

is equivalent to the soft margin support vector machine formulation given in Equation 6.4.6

for equivalent choices of the tradeoff parameters γ and S. In this work we focus on the use of

logistic regression instead of SVMs. Do to the similarity between support vector machines an

logistic regression, we expect results to generalize well from logistic regression to SVMs.

6.5 Basis Expansion and Kernel Methods

The classification methods we have considered to this point allow for a very limited class of

decision surfaces. Linear discriminant analysis, linear logistic regression, perceptrons, and linear

support vector machines all have decision surfaces described by hyperplanes. Of the methods we

have discussed, only quadratic discriminant analysis and some forms of regularized discriminant

analysis have non-linear decision surfaces.

In statistics the restrictions imposed by linear models are often overcome through the use of

higher order interaction terms [15, p. 191]. Consider the case when the feature vector x is two

dimensional, for example. Linear logistic regression finds the hyperplane w1x1 +w2x2 + b that

maximizes the conditional probability of the labels. If there is a strong interaction between x1

and x2, then an interaction term of the from x1x2 can be included and an optimal hyperplane

of the form w1x1 + w2x2 + w3x1x2 + b will be found. Basis expansions and kernel methods

generalize this basic strategy for converting a linear classifier into a non-linear classifier. The

resulting learning algorithms are often convex for a fixed basis expansion or kernel function.
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6.5.1 Basis Expansion

The idea of interaction terms can be generalized by replacing the original feature vector x

with a derived feature vector z = [φ1(x), ..., φM (x)]. Each φi(x) is a function that maps a

D dimensional vector to a scalar value. More generally, we can assume that there exists a

mapping z = Φ(x) that maps D dimensional feature vectors to M dimensional derived feature

vectors. Normally M will be greater than D, in which case the vector z is referred to as a basis

expansion of x [32, p. 115].

Under the assumption that the function Φ(x) is fixed, the vector zn can be computed for

each xn. Standard methods for fitting linear models can then be applied to the data in the

expanded basis. The result is a model that is linear in the expanded basis. However, if any of

the basis functions φi(x) are non-linear, the resulting model will be non-linear in the original

features x. This is a useful way to obtain non-linear models while retaining the ease of fitting

linear models. The obvious problem with this approach is that it assumes an appropriate set

of basis functions is known a priori.

6.5.2 Kernel Methods

In many linear classification models the optimal parameters can be expressed in terms of a

linear combination of data cases. As a result, the corresponding classification rule depends only

on inner products between data vectors. In the case of logistic regression and perceptrons, it

is clear from the optimization algorithm that the resulting optimal weight parameters can be

expressed as a linear combination of data vectors. In the case of support vector machines, an

analysis of the dual optimization problem shows that the optimal parameters can be expressed

as a linear combination of data vectors.

When a basis expansion is introduced, the optimal weight vector depends only on a linear

combination of the expanded vectors Φ(xn). The fact that the optimal parameters depend only

on inner products between the Φ(xn) means we never need to explicitly compute the value

of Φ(xn) for a single data case in isolation. It suffices to have a kernel function K(xi,xj) =

Φ(xi)
T Φ(xj) that returns the required inner products. Further, it is possible to directly specify

a kernel function, and prove that it corresponds to an inner product under some mapping Φ(·),
without explicitly constructing that mapping Φ(·).

In order for a kernel function to correspond to a valid inner product for some mapping Φ(·)
it suffices for the kernel function to be positive definite. A kernel K(·, ·) is positive definite if

for any N and any x1, ...,xN , the induced Gram matrix Kij = K(xi,xj) is positive definite. A

real-valued N ×N Gram matrix K is positive definite if it is symmetric, and for any choice of

vector v ∈ R
N the quadratic form vTKv ≥ 0 [68, p. 30].
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6.5.3 Kernel Support Vector Machines and Kernel Logistic Regression

In the kernel support vector machine we replace the optimal weights by the optimal linear

combination of expanded data vectors Φ(xn): w =
∑N

n=1 αnynΦ(xn). This leads to a decision

surface based only on the corresponding kernel function K(·, ·) as seen in equation 6.5.1.

wT Φ(xn) + b =
N∑

n′=1

αn′yn′Φ(xn′)T Φ(xn) + b =
N∑

n′=1

αn′yn′K(xn′ ,xn) + b (6.5.1)

The optimal weight vector and decision surface for binary kernel logistic regression can also

be expressed as seen in Equation 6.5.1. However, the optimal parameters are found by mini-

mizing a regularized logistic loss function. In Equation 6.5.2 we shown the objective function

for L2 regularized kernel logistic regression in the multiclass case.

fL(α) = min
α
−

N∑

n=1

C∑

c=1

[yn = c] log

(
exp(

∑N
n′=1 αn′cK(xn′ ,xn) + bc)

exp(
∑C

c′=1

∑N
n′=1 αn′c′K(xn′ ,xn) + bc′)

)
+ γ

C∑

c=1

α
T
c Kαc

(6.5.2)

One of the main advantages of the kernel support vector machine is that a number of αn

are usually exactly zero. This is a result of the hinge loss being exactly equal to zero for data

cases on the correct side of the margin. L2 regularized kernel logistic regression does not share

this property. In general all data cases will have non-zero αn.

An advantage of kernel logistic regression is that it naturally estimates classification prob-

abilities while kernel support vector machines do not. Under certain conditions, kernel logistic

regression also has margin maximizing properties similar to kernel support vector machines

[80]. As we have shown, kernel logistic regression naturally generalizes to the multiclass set-

ting simply by replacing the logistic loss by a loss function derived from the softmax function.

We perform experiments exclusively with kernel logistic regression, although we again expect

similar results using kernel support vector machines.

The primal L2 regularized kernel logistic regression optimization problem is unconstrained,

and can be solved directly using first or second order non-linear optimization methods. The

dual Sequential Minimal Optimization (SMO) method for kernel logistic regression developed by

Keerthi et al. reportedly achieves significant increases in speed compared to standard first and

second order optimization methods applied to the primal optimization problem [46]. However,

the SMO method has only been developed for the binary classification case. We use a simple

primal optimization method in all experiments.
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6.5.4 Kernels For Missing Data Classification

The main problem in the application of kernel methods is the choice of an appropriate kernel

function. In the present context this choice is complicated by the fact that the kernel function

must be defined even in the presence of missing feature values. To make the dependence on the

response indicators explicit we consider kernels of the form K(xi, ri,xj , rj).

Linear Kernels

The linear kernel Ko
l shown in equation 6.5.3 is a positive definite kernel since it corresponds

to the standard inner product in R
D when the data vector and response indicator vector are

mapped to x� r. � denotes the element-wise product. This mapping simply replaces missing

values by zeros, and is one of the kernel studied by Chechik et al. [13].

Ko
l (xi, ri,xj , rj) =

∑

d

rdirdjxdixdj (6.5.3)

The explicit representation of missing data in terms of response indicators leads us immedi-

ately to the new linear kernel Ko+r
l shown in equation 6.5.4. Again, this kernel can immediately

be seen as positive definite since it corresponds to the standard inner product in R
2D when the

data vector and response indicator vector are mapped to [x � r,
√
γr]. Performing kernel lo-

gistic regression using the linear kernel Ko
l corresponds to performing linear logistic regression

combined with zero imputation. Performing kernel logistic regression using the linear kernel

Ko+r
l corresponds to performing logistic regression under the response indicator framework.

Ko+r
l (xi, ri,xj , rj) =

∑

d

rdirdjxdixdj + γrdirdj (6.5.4)

Polynomial Kernels

Given these two positive definite linear kernels, we can obtain a pair of more interesting positive

definite inhomogeneous polynomial kernels through the usual construction [68, p. 46 ]. The

kernels are given in equations 6.5.5 and 6.5.6. Positive definiteness of Ko
p and Ko+r

p follows

from the positive definiteness of Ko
l and Ko+r

l . Chechik et al. have also studied the Ko
p kernel

[13].
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Ko
p(xi, ri,xj , rj) =

(
κ+

∑

d

rdirdjxdixdj

)δ

(6.5.5)

Ko+r
p (xi, ri,xj , rj) =

(
κ+

∑

d

rdirdjxdixdj + γrdirdj

)δ

(6.5.6)

Gaussian Kernels

An interesting open problem is the development of a Gaussian-like kernel for use with missing

data. Following the development of the observed data linear and polynomial kernels, the obvious

extension of the gaussian kernel to the case of missing data is given in equation 6.5.7.

Ko
g (xi, ri,xj , rj) = exp(− 1

σ2
Do(xi, ri,xj , rj)

2) (6.5.7)

Do(xi, ri,xj , rj) =

(
∑

d

rdirdj(xdi − xdj)
2

) 1

2

(6.5.8)

Like the linear and polynomial kernels, Ko
g only takes into account features that are observed

both in xi and xj . K
o
g can also be thought of as a distance substitution kernel where the standard

euclidean distance has been replaced by euclidean distance Do() within the intersection of the

observed feature spaces of xi and xj . However, Do() is not a metric since it does not satisfy the

triangle inequality. This can be shown by counter example. As a result, Ko
g can not be positive

definite [31]. In addition Ko
g strongly violates even an intuitive notion of similarity since two

data vectors with no overlap in their observed feature spaces have a distance of 0 under Do(),

and thus a similarity of 1 according to Ko
g .

Now consider the gaussian-like kernel Ko+r
g given in equation 6.5.9. Do+r measures the

distance between data points according to euclidean distance in the intersection of the observed

feature spaces, and adds a penalty term γ for each dimension where only one of the two data

vectors is observed.

Ko+r
g (xi, ri,xj , rj) = exp(− 1

σ2
Do+r(xi, ri,xj , rj)

2) (6.5.9)

Do+r(xi, ri,xj , rj) =

(
∑

d

rdirdj(xdi − xdj)
2 + γd(rdi − rdj)2

) 1

2

(6.5.10)

We first note that if γd is set to positive infinity for all d, Ko+r
g will always result in a positive
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XOR

Loss Err(%)

pKLR Zero 0.3660 25.75

pKLR Mean 0.3660 26.50

pKLR Mix 0.2046 5.75

pKLR Reduced 0.1345 6.25

pKLR Augmented 0.1467 5.50

gKLR Zero 0.1932 7.00

gKLR Mean 0.2271 8.25

gKLR Mix 0.2055 5.25

gKLR Reduced 0.1402 5.75

gKLR Augmented 0.1677 5.25

Table 6.3: Summary of illustrative results for kernel logistic regression combined with zero
imputation, mean imputation, multiple imputation, reduced models, and the response indicator
framework. We report the log loss (average negative log probability of the correct class), as
well as the average classification error.

definite kernel matrix. For any two data points that are defined in the same feature subspace,

the value of Ko+r
g is equal to the standard Gaussian Kernel applied in that sub-space. For any

two data points that are defined in different subspaces, the value of Ko+r
g will be 0. Permuting

the kernel matrix so that all the rows and columns corresponding to data points from the same

subspace are contiguous results in a block diagonal matrix where each block is positive definite.

As a result, the complete Kernel matrix is positive definite.

Performing kernel logistic regression using theKo+r
g kernel with γd =∞ has some interesting

properties. First, since the Ko+r
g kernel matrix is block diagonal, using it to perform kernel

logistic regression is similar to separately computing a kernel logistic regression classifier in each

observed data subspace using only the data specifically from that sub-space. This is closely

related to the reduced models approach of Sharp and Solly [69].

The negative side of using the Ko+r
g kernel with γd = ∞ is that there is no regularization

across feature subspaces. In the extreme case of a data set with every data point in a unique

subspace, no regularization would be achieved at all. The solution to this problem is to consider

Ko+r
g for general γ, but it can again be shown that Do+r fails to satisfy the triangle inequality in

general. However, it may be possible to construct a positive definite kernel matrix using a small

values of γd for a fixed data set, even though the kernel function is not positive definite. Another

option is to construct the kernel matrix and explicitly test if it is positive definite. Indefinite

kernel matrices can be made positive semi-definite by modifying the eigen-decomposition to

eliminate negative eigen values.



Chapter 6. Classification With Missing Data 133

−2 0 2

−3

−2

−1

0

1

2

3

(a) Training Data - XOR

−2 0 2

−3

−2

−1

0

1

2

3

(b) pKLR Zero Imputation

−2 0 2

−3

−2

−1

0

1

2

3

(c) pKLR Mean Imputation

−2 0 2

−3

−2

−1

0

1

2

3

(d) pKLR mixFA Imputation

−2 0 2

−3

−2

−1

0

1

2

3

(e) pKLR Reduced

−2 0 2

−3

−2

−1

0

1

2

3
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Figure 6.5: This figure shows results for the XOR data set based on several missing data
methods combined with degree two polynomial kernel logistic regression. Missing data methods
include zero imputation, mean imputation, multiple imputation, reduced models, and response
indicator augmentation. The results show poor performance using zeros imputation and mean
imputation. Multiple imputation, reduced models, and the response indicator framework all
give similar accuracy. The multiple imputation classification function is again much smoother.

6.5.5 Synthetic Data Experiments and Results

To illustrate the performance of non-linear classification methods, a two class Gaussian mixture

data set closely related to the binary exclusive or (XOR) problem was created. The first class

has means located at [2.2, 1] and [−2.2,−1]. The second class has means located at [−1, 2.2] and

[1,−2.2]. A spherical covariance matrix with variance equal to 0.2 was used for both Gaussian

components in each class. A total of 100 training points and 200 test points were sampled from

each class. Missing data was created by randomly assigning each data case to one of the three

response patterns [1, 1], [1, 0], [0, 1]. We refer to this data set as the “XOR” data set. It is

pictured in Figure 6.5(a).

A degree two polynomial kernel logistic regression method was combined with zero im-

putation, mean imputation, multiple imputation, reduced models, and the response indicator

framework. The standard polynomial kernel was used in all cases except for the response indi-

cator framework where the Ko+r
p kernel was used with γ fixed to 1. A Gaussian kernel logistic
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Figure 6.6: This figure shows results for the XOR data set based on several missing data
methods combined with Gaussian kernel logistic regression. Missing data methods include zero
imputation, mean imputation, multiple imputation, reduced models, and response indicator
augmentation. Gaussian kernel logistic regression is better able to deal with zero and mean
imputation than the more rigid polynomial kernel. Multiple imputation, reduced models, and
the response indicator framework yield similar classification functions and similar accuracy,
with multiple imputation again leading to a smoother classification function.

regression method was also combined with zero imputation, mean imputation, multiple impu-

tation, reduced models, and the response indicator framework. The standard Gaussian kernel

with σ2 = 2 was used in all cases except for the response indicator framework where the Ko+r
g

kernel was used with γd fixed to 1 for all d, and σ2 fixed to 2. The regularization parameter

for both the polynomial and Gaussian methods was set by five fold cross validation over the

range 10−2 to 10−5. The multiple imputation results are based on a mixture of factor analyzers

model with latent dimensionality Q = 1, and K = 6 mixture components. Each method was

run for a maximum of 1000 training iterations.

The resulting classification functions are shown in Figures 6.5 and 6.6. Classification per-

formance is summarized in Table 6.3. The results show that degree two polynomial kernel

logistic regression is unable to deal with zero and mean imputed missing data. This is expected

sice the model does not have sufficient capacity to account for missing data embedded along

the axes. Gaussian kernel logistic regression is better able to cope with zero and mean im-
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puted missing data, but it is clear that both of these imputation strategies adversely affect the

resulting classification function. Polynomial kernel regression does have sufficient capacity to

accurately classify the Mix data set when the imputations are more accurate, or reduced mod-

els are used. Polynomial kernel logistic regression also works well in this case when response

indicator augmentation is used. A similar pattern holds for Gaussian kernel logistic regression

where multiple imputation, reduced models, and the response indicator framework yield similar

results and similar classification functions.

6.6 Neural Networks

Neural networks are a biologically inspired computational framework where a number of simple

computational units, the neurons, are connected together to compute a more complex function.

Neural networks can be characterized by the topology of the network, the dynamics of the

network, and the activation function computed at each node. The key property of neural

networks is that the activation function computed at each node is a parametric function. In

the classification setting, neural networks learn to classify inputs by adapting the parameters

associated with each node in the network. In this section we review sigmoid multi-layer feed-

forward neural networks, and their application to classification with missing data.

6.6.1 Feed-Forward Neural Network Architecture

The network topology of a feed-forward neural network is constrained to be a directed acyclic

graph. The nodes are typically arranged in one or more layers, with connections between layers,

but not within layers. The first layer is called the input layer, and the last layer is called the

output layer. Any intermediate layers are referred to as hidden layers. The parents of a node

in the network are referred to as that node’s inputs. We will assume that each layer is fully

connected to the subsequent layer. At time step t each node in layer t computes its output

value by applying its local activation function to its inputs. The assumption that the network

topology is a directed acyclic graph insures that the input values needed at each time step have

already been computed, and are not affected by computations at higher levels in the network.

The activation function computed at each node is typically a function of a linear combination

of its inputs. In this case the directed edges connecting nodes in the network can be thought

of as having weights. Typical functions applied to the linear combination of inputs include the

identity, sign, logistic or sigmoid, and hyperbolic tangent functions.
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6.6.2 One Hidden Layer Neural Networks for Classification

In this section we develop a learning algorithm for feed forward neural networks with one hidden

layer. We denote the inputs by xdn, the first layer activations by A1
kn, the hidden unit values

by hkn, the second layer activations by A2
cn, and the outputs by ŷcn. We denote the number

of nodes in the hidden layer by K. The first layer weight from input dimension d to hidden

unit k is denoted W 1
dk. The second layer weight from hidden unit k to output unit c is denoted

by W 2
kc. We denote the hidden unit biases by b1k, and the output unit biases by b2c . We select

a sigmoid or logistic activation function σ(·) for the hidden units as shown in Equation 6.6.1.

We assume a multiclass classification setting and choose a softmax activation function at the

output layer coupled with a cross-entropy objective function as shown in Equation 6.6.2.

σ(x) =
1

1 + exp−x (6.6.1)

L = −
N∑

n=1

C∑

c=1

[yn = c] log(ŷcn) (6.6.2)

The output of a feed forward neural network is computed using a forward pass through the

network from the input layer to the output layer as seen in Equation 6.6.3.

A1
kn =

D∑

d=1

W 1
dkxdn + b1k (6.6.3)

hkn = σ(A1
kn) (6.6.4)

A2
cn =

K∑

k=1

W 2
kchkn + b2c (6.6.5)

ŷcn =
exp(A2

cn)
∑C

c′=1 exp(A2
c′n)

(6.6.6)

The parameters of the network are adapted using gradient descent on the objective function

given in Equation 6.6.2. The back-propagation algorithm [32, p. 353] is an efficient method

for computing the required gradients by exploiting the structure of the network. The weights

are fixed and a forward pass is used to compute and store the activation, hidden unit, and

output values. The derivatives with respect to the weights, biases, and activation values are

then computed and stored using a backward pass through the network. The gradients for the

current network are given in Equations 6.6.7 to 6.6.11.
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∂L
∂A2

cn

= ŷcn − [yn = c] (6.6.7)

∂L
∂W 2

kc

=
N∑

n=1

∂L
∂A2

cn

∂A2
cn

∂W 2
kc

=
N∑

n=1

(ŷcn − [yn = c])hkn (6.6.8)

∂L
∂b2c

=
N∑

n=1

∂L
∂A2

cn

∂A2
cn

∂b2c
=

N∑

n=1

(ŷcn − [yn = c]) (6.6.9)

∂L
∂W 1

dk

=

N∑

n=1

C∑

c=1

∂L
∂A2

cn

∂A2
cn

∂hkn

∂hkn

∂A1
kn

∂A1
kn

∂W 1
dk

=

N∑

n=1

C∑

c=1

∂L
∂A2

cn

W 2
kchkn(1− hkn)xdn (6.6.10)

∂L
∂b1k

=

N∑

n=1

C∑

c=1

∂L
∂A2

cn

∂A2
cn

∂hkn

∂hkn

∂A1
kn

∂A1
kn

∂b1k
=

N∑

n=1

C∑

c=1

∂L
∂A2

cn

W 2
kchkn(1− hkn) (6.6.11)

6.6.3 Special Cases of Feed-Forward Neural Networks

Rosenblatt’s perceptron discussed in Section 6.4.1 is considered to be the earliest example of a

feed-forward neural network [63]. The network consists of the input layer, and one output node.

The activation function at the output node is the sign of a linear combination of the inputs.

The loss function used by the perceptron is classification error. Since the activation function

used by the perceptron has a discontinuous first derivative, the back-propagation algorithm can

not be used. Instead, the Perceptron Learning Rule adapts the weights or connection strengths

in the network in response to classification errors.

Logistic regression discussed in Section 6.3 can also be interpreted in terms of a neural

network. In the multi-class case logistic regression corresponds to a network with an input

layer, an output layer with C nodes, and no hidden layer. The activation function used at each

output is the softmax function. The loss function used is cross-entropy.

6.6.4 Regularization in Neural Networks

Several regularization techniques are commonly used to improve neural network learning. Weight

decay corresponds placing an L2 penalty on the network weights w. L1 regularization is less

commonly used with neural networks due to the discontinuity in the penalty function.

Momentum is a heuristic optimization strategy that modifies the current gradient by mixing

in a portion of the previous gradient. The use of momentum in gradient descent is often

motivated by a physical analogy to a ball rolling down a hill. If the ball has no momentum it

will be trapped by any local minimum, no matter how shallow. If the ball has momentum it can

skip over shallow local minima, and continue down the hill until it falls into a deep minimum.

Early stopping is a heuristic optimization technique used to avoid over-fitting in neural net-
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XOR

Loss Err(%)

NN Zero 0.3114 11.75

NN Mean 0.1781 7.25

NN Mix 0.2124 4.50

NN Reduced 0.1610 5.50

NN Augmented 0.1847 5.75

Table 6.4: Summary of illustrative results for multi-layer neural networks combined with zero
imputation, mean imputation, multiple imputation, reduced models, and the response indicator
framework. We report the log loss (average negative log probability of the correct class), as
well as the average classification error.

works. The optimization is typically started with all weights set to small random values. When

the weights are small typical activation functions including the sigmoid function behave as if

they were linear. As the optimization proceeds some weights increase in magnitude thereby

introducing non-linearities into the network, and increasing its capacity. Starting the opti-

mization process with small weights and stopping before convergence limits the capacity of the

network, and provides a form of regularization.

6.6.5 Neural Network Classification and Missing Data

The imputation and reduced models strategies can be combined with multi-layer neural net-

works in exactly the same way as logistic regression. When combining neural networks with

multiple imputation we train a separate network for each imputation model. When combin-

ing neural networks with both multiple imputation and cross validation, we choose regular-

ization parameters separately for each imputation model. Similarly, when combining neural

networks and reduced models we set cross validation parameters separately for each reduced

model learned. As in the logistic regression case, we use all data cases that contain the required

observed dimensions when learning each reduced model.

Combining neural networks with the response indicator framework is also similar to the

logistic regression case. Augmenting the input representation with the response indicator vector

only affects the first hidden layer as seen in Equation 6.6.12.

A1
kn =

1

1 + exp(−(
∑D

d=1 rd(wdk2xdn + vdn) + b1k))
(6.6.12)

We apply several random restarts when learning multi-layer neural networks to help mitigate

the problem of local optima. We select the network achieving the lowest training loss from

among the candidate networks. When combining neural networks with multiple imputation
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Figure 6.7: This figure shows results for the XOR data set based on several missing data
methods combined with a multi-layer neural network with one hidden layer containing 6 hidden
units. Missing data methods include zero imputation, mean imputation, multiple imputation,
reduced models, and response indicator augmentation. The results show that the non-linearity
of the neural network is able to overcome poor embeddings resulting from zero and mean
imputation to a certain degree. Multiple imputation performs the best on this data set, followed
closely by the reduced models approach and the response augmented network. It is clear from
inspection that the response indicator augmented network learns a more flexible embedding of
the incomplete data cases than response augmented logistic regression.

or reduced models, as well as cross validation, this means learning several networks for each

combination of imputation model or observed data sub-space, and each set of cross validation

parameters.

6.6.6 Synthetic Data Experiments and Results

A neural network classifier with one hidden layer and six hidden units was learned on the XOR

data set in combination with zero imputation, mean imputation, multiple imputation, reduced

models, and the response indicator framework. Logistic activation functions were used for the

hidden units as well as the output. Weight decay was applied with a regularization parameter

set by five fold cross validation over the range 10−2 to 10−5. The multiple imputation results

are based on a mixture of factor analyzers model with latent dimensionality Q = 1, and K = 6
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mixture components. Each method was run for a maximum of 1000 training iterations, and 5

random restarts were used.

The resulting classification functions are shown in Figure 6.7, and classification performance

is summarized in Table 6.4. Zero imputation and mean imputation show two very different

classification functions. Note that the overall data mean is approximately zero so the two

solutions simply represent two different local optima. The mean imputation result shows that

a non-linear neural network classifier with sufficient capacity can achieve reasonable accuracy

using poor imputation methods. The performance of multiple imputation, reduced models, and

the response indicator framework were found to be quite similar, despite learning very different

classification functions. The smoothness of the multiple imputation solution is likely explained

by the fact that it results from an ensemble of neural network classifiers. The response indicator

augmented neural network has clearly not learned an axis aligned embedding of the missing

data, showing that it is significantly more flexible than response augmented logistic regression.

6.7 Real Data Experiments and Results

In this section we report results of experiments performed on several real data sets using the clas-

sification methods described in this chapter. Experiments were performed using three medical

domain data sets from the UCI machine learning repository including Hepatitis, Thyroid-Sick,

and Thyroid-AllHypo. All three data sets contain natural missing data. In the final experiment

we consider the problem of classifying MNIST digit images subject to artificial missing data.

6.7.1 Hepatitis Data Set

The UCI Hepatitis data set consists of a binary class label indicating whether the patient lived

or died. The data set includes a total of 19 features. Twelve of the features are binary, while

the remaining seven features are real valued. There are a total of 155 cases in the data set.

32 cases correspond to an outcome where the patient died, and 123 correspond to an outcome

where the patient lived. Approximately 6% of the feature values are missing. There are 21

different patterns of missing data. The data set does not have a fixed test set. Due to the

small number of cases, a ten fold cross validation error assessment was performed. Logistic

regression was combined with zero imputation, mean imputation, multiple imputation, reduced

models, and the response augmentation framework. L2 regularization was applied in all cases

with the regularization parameter set by a ten fold cross validation search over the range 20 to

2−10. The multiple imputation procedure used 5 imputations from a factor analysis mixture

with K = 10 mixture components and Q = 5 latent dimensions. The discriminatively trained

LDA-FA model was also applied. A cross validation search was performed over both the number
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Hepatitis

Loss Err(%)

LR Zero 0.4012± 0.0439 20.67± 2.71

LR Mean 0.4064± 0.0576 18.00± 2.82

LR MixFA 0.3517± 0.0506 13.33± 3.44

LR Reduced 0.4443± 0.0720 19.33± 3.78

LR Augmented 0.5812± 0.1258 19.33± 4.27

LDA-FA Dis 0.4312± 0.0720 20.00± 3.98

Table 6.5: Results on the UCI Hepatitis Data set.

of latent dimensions, and the value of the regularization parameter. Latent dimensions in the

range 1 to 15 were tried, as were regularization parameters in the range 20 to 2−10.

The results of this experiment are presented in Table 6.5. For the most part, the methods

have approximately equal performance in terms of both the log loss, and classification error.

The one interesting result in this data set is the combination of multiple imputation and logistic

regression, which obtains a much lower value of the log loss as well as the classification error

rate. This may seem surprising since there are a significant number of binary features in the

Hepatitis data set, and the imputation model assumes features are continuous. However, most

of the missing attributes in the data set are real valued.

6.7.2 Thyroid - AllHypo Data Set

The UCI Thyroid-AllHypo data set consists of four classes: Primary Hypothyroid, Compensated

Hypothyroid, Secondary Hypothyroid and Negative. We perform the standard prediction task,

which consists of discriminating between the negative class and the remaining classes. We used

five continuous feature variables: FTI, T4U, TT4, T3, and TSH. There are a total of 2659

training cases and a total of 934 test cases. The test data set contains 863 negative cases

and 71 positive cases. Approximately 7% of feature values are missing. There are 15 different

patterns of missing data.

Logistic regression was combined with zero imputation, mean imputation, multiple imputa-

tion, reduced models, and the response augmentation framework. L2 regularization was applied

in all cases with the regularization parameter set by five fold cross validation search over the

range 20 to 2−10. The multiple imputation procedure used 5 imputations from a factor analysis

mixture with K = 4 mixture components and Q = 3 latent dimensions. A sigmoid neural

network with one hidden layer was combined with mean imputation, multiple imputation, re-

duced models, and the response augmentation framework. L2 regularization was applied in all

cases with the regularization parameter set by five fold cross validation search over the range

20 to 2−10. The hidden layer was fixed to 3 hidden units. The discriminatively trained LDA-FA
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Thyroid: AllHypo

Loss Err(%)

LR Zero 0.1284± 0.0002 3.62± 0.02

LR Mean 0.1274± 0.0001 3.43± 0.00

LR MixFA 0.1273± 0.0020 3.88± 0.15

LR Reduced 0.1281± 0.0008 3.53± 0.06

LR Augmented 0.1246± 0.0003 3.49± 0.03

NN Mean 0.0630± 0.0007 2.51± 0.08

NN MixFA 0.0673± 0.0002 2.72± 0.03

NN Reduced 0.0650± 0.0004 2.55± 0.07

NN Augmented 0.0612± 0.0003 2.57± 0.10

LDA-FA Dis 0.1246± 0.0003 3.55± 0.02

Table 6.6: Results on the UCI Thyroid AllHypo Data set

model was also applied. A cross validation search was performed over both the number of latent

dimensions, and the value of the regularization parameter. Latent dimensions in the range 0

to 5 were tested along with regularization parameters in the range 20 to 2−10. A maximum of

1000 learning iterations was used for each method. The complete experiment was repeated 5

times using different cross validation splits during training.

The results of this experiment are presented in Table 6.6. The logistic regression-based

models all achieve approximately the same log loss and classification error rates on this data

set. The discriminatively trained LDA-FA model also performs about the same as the logistic

regression models. Interestingly, the neural network classifiers show a significant improvement

in both classification error and log loss compared to the linear classification methods. The

performance of all four neural-network strategies was similar, although the response augmented

neural network is significantly better than the next best method in terms of log loss.

6.7.3 Thyroid - Sick Data Set

The UCI Thyroid-Sick data set consists of two classes: Sick and Negative. The feature set is

the same as for the Thyroid-AllHypo data set. We used five continuous feature variables: FTI,

T4U, TT4, T3, and TSH. There are a total of 2659 training cases and a total of 934 test cases.

The test data set contains 874 Negative cases and 60 Sick cases. Approximately 7% of feature

values are missing. There are 15 different patterns of missing data.

Logistic regression was combined with zero imputation, mean imputation, multiple imputa-

tion, reduced models, and the response augmentation framework. L2 regularization was applied

in all cases with the regularization parameter set by five fold cross validation search over the

range 20 to 2−10. The multiple imputation procedure used 5 imputations from a factor analysis

mixture with K = 4 mixture components and Q = 3 latent dimensions. A sigmoid neural
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Thyroid: Sick

Loss Err(%)

LR Zero 0.2123± 0.0005 6.75± 0.00

LR Mean 0.1112± 0.0000 5.25± 0.00

LR MixFA 0.1270± 0.0009 6.21± 0.11

LR Reduced 0.1263± 0.0000 5.35± 0.00

LR Augmented 0.1166± 0.0024 5.35± 0.06

NN Mean 0.1892± 0.0036 6.42± 0.00

NN MixFA 0.1118± 0.0012 5.03± 0.15

NN Reduced 0.1069± 0.0022 3.81± 0.09

NN Augmented 0.1065± 0.0025 4.95± 0.19

LDA-FA Dis 0.1092± 0.0011 5.16± 0.02

Table 6.7: Results on the UCI Thyroid Sick Data set.

network with one hidden layer was combined with mean imputation, multiple imputation, re-

duced models, and the response augmentation framework. L2 regularization was applied in all

cases with the regularization parameter set by five fold cross validation search over the range

20 to 2−10. The hidden layer was fixed to 3 hidden units. The discriminatively trained LDA-FA

model was also applied. A cross validation search was performed over both the number of latent

dimensions, and the value of the regularization parameter. Latent dimensions in the range 0

to 5 were tested along with regularization parameters in the range 20 to 2−10. A maximum of

1000 learning iterations was used for each method. The complete experiment was repeated 5

times using different cross validation splits during training.

The results of this experiment are presented in Table 6.7. There is considerably more

variation between the linear logistic methods on the Sick data set compared to the AllHypo

data set. Logistic regression with zero imputation performs significantly worse than the other

methods in terms of both log loss and classification error. The reduced neural network approach

obtains a significantly better test error than any of the other methods on this data set, followed

by the response indicator augmented neural network. However, the log loss values are quite

similar for the top performing methods.

6.7.4 MNIST Data Set

The MNIST data set consists of 28× 28 size images of hand written digits [47]. The standard

MNIST classification task is to predict the digit represented by each image. The classification

problem has ten classes corresponding to the digits 0 to 9. We consider the full ten class

problem. We form a training set consisting of 100 randomly selected training images from

each digit class, and a test set containing 500 randomly selected test images from each digit

class. We apply a synthetic missing data process to the digit images that randomly selects and
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Figure 6.8: This figure shows the result of adding random missing data to MNIST digit
images. One quadrant of each image was selected at random and removed. The missing regions
are shown in black.

removes one quadrant of each image. This results in only four patterns of missing data so that

the reduced models framework may be evaluated. Example digit images are shown in Figure

6.8. Chechik et al. consider a similar task based on the MNIST data set, but restricted to the

two class problem of discriminating 5′s and 6′s [14].

We combine logistic regression with zero imputation, mean imputation, reduced models,

and the response indicator framework. We consider learning the discriminatively trained LDA-

FA model with latent dimensionality 0, 10, 20, and 50. We combine a one hidden layer neural

network with mean imputation, reduced models, and the response indicator framework. The

hidden layer of the neural network was fixed to 20 hidden units. Finally, we combine Gaussian

kernel logistic regression with mean imputation, reduced models, and the response indicator

framework. We use five fold cross validation to set the regularization parameters of all of the

models. We also use five fold cross validation to set the Gaussian kernel parameters for kernel

logistic regression. We search over the range σ2 = 25, 50, 100, 200 for all Gaussian kernels. For

the response augmented gaussian kernel we set γd = γs2d where s2d is the empirical variance on

dimension d, and γ = 1, 0.01, 0.0001 was set by cross validation. We remove negative eigenvalues

from the response augmented kernel matrix to ensure that it is positive definite. All methods

were trained for up to 1000 iterations.

The results of this experiment are given in Table 6.8. It is interesting to note that the worst

performance is obtained using the reduced models framework. Note that there are only four

patterns of missing data in the data set, but there are also only 100 training cases per class.

This means that on average each reduced model is trained on less than 25 data cases per class.

It is clear from the results that pooling data cases with different response patterns leads to
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MNIST Digits

Loss Err(%)

LR Zero 0.6350± 0.0110 19.75± 0.41

LR Mean 0.6150± 0.0112 19.15± 0.34

LR Reduced 0.7182± 0.0135 22.62± 0.45

LR Augmented 0.6160± 0.0112 19.35± 0.36

LDA-FA Dis 0.6355± 0.0051 19.95± 0.25

NN Mean 0.6235± 0.0541 18.34± 0.42

NN Reduced 0.6944± 0.0088 21.51± 0.27

NN Augmented 0.5925± 0.0161 17.76± 0.18

gKLR Mean 0.4147± 0.0075 13.02± 0.24

gKLR Reduced 0.5694± 0.0079 18.32± 0.49

gKLR Augmented 0.3896± 0.0101 12.34± 0.46

Table 6.8: Results on the MNIST data set with synthetic missing data.

better classification performance.

Linear classification methods are known to give poor performance on the MNIST data

set, so it is not surprising that the LDA-FA model and the logistic regression based solutions

yield relatively low classification accuracy. The best results are obtained using the response

augmented neural network, and response augmented Gaussian kernel logistic regression method.

It is interesting to note that the performance of the response augmented Gaussian kernel logistic

regression method is significantly better than the reduced Gaussian kernel logistic regression

method. This indicates that the response augmented kernel selected by the cross validation

procedure is allowing for useful smoothing between data cases with different response patterns.
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Conclusions

Learning, inference, and prediction in the presence of missing data are pervasive problems in

machine learning and statistical data analysis. This thesis focuses on the problems of collab-

orative prediction with non-random missing data and classification with missing features. We

have presented new experimental protocols, new data sets, and new models and algorithms for

learning, inference, and prediction. In this final chapter we present concluding remarks and

indicate directions for future research.

7.1 Unsupervised Learning with Non-Random Missing Data

In the first half of this thesis, we describe a framework for collaborative prediction in the presence

of non-random missing data. The framework is based on combining probabilistic models for

complete data with probabilistic models of the non-random missing data process. These missing

data models capture simple non-random effects by allowing the response probability for each

data dimension to depend on the underlying feature values. Models and prediction methods

were tested both on the novel Yahoo! music data set with natural missing data and the Jester

data set with synthetic missing data.

Our results show that incorporating a model of the missing data process results in substantial

improvements in predictive performance on randomly selected items compared to models that

ignore the missing data process. Our results show that training and testing only on ratings

for user selected items can vastly overestimate prediction performance on randomly selected

items. Our analysis also shows that the availability of even a small sample of ratings for

randomly selected items can have a large impact on rating prediction performance. Rating

prediction performance is also important if recommendations are derived from predicted ratings.

Our initial results evaluating rankings produced by rating prediction methods also show that

modeling the missing data mechanism results in improved ranking performance.

146
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There are many interesting future directions for modeling and learning with non-random

missing data within the collaborative filtering domain. The development of more flexible miss-

ing data models for the collaborative filtering domain remains an important and challenging

problem. The key assumption of the CPT-v model is that the choice to rate an item depends

only on the underlying rating value. The Logit-vd model loosens that assumption by allowing

the choice to also depend on the identity of the item. Of course, one might speculate that there

are any number of other factors involved in the choice to rate an item. The identity of the user

is likely to be important for several reasons. First, some users may be inherently more inter-

ested in rating items than other users. Second, different users may differ in their probability of

response for a given underlying preference level. This necessitates the introduction of different

missing data probabilities for different users, or classes of users.

The assumption that the choice to rate each item is independent of all of the other items

given the underlying rating value and item identity may also be questionable. It could be

interesting to consider removing this assumption and allowing response probabilities to directly

depend on higher level user tastes or preferences, as captured by latent variables. A related

issue is that current models strictly assume that the user chooses not to rate all of the unrated

items. This assumption is certainly flawed in the case of new users where we know that the

number of ratings the user has entered is limited by the amount of time the user has spent

using the recommender system. The assumption also may not hold for users who are not aware

that certain items are available in the recommender system.

A further implicit assumption is that all users in the recommender system use the rating

scale in the same way. This is not necessarily the case, and has the potential to introduce an

additional ambiguity when interpreting rating data. How might one go about deciding whether

a particular user selects items to rate completely at random and then only uses the extreme

one star and five star rating values, or whether the same user only rates items he thinks are

one star or five star items? In both cases all of the observations will be either one star or five

star ratings, but the two situation have very different interpretations.

Relaxing the assumptions behind the CPT-v and Logit-vd models in one or more of the

ways we have described here has the potential to result in more flexible selection models.

However, a crucial problem is the development of suitable learning, inference, and prediction

methods. Likely candidates for dealing with more flexible selection models are hierarchical and

semi-parametric Bayesian modeling and inference. However, the need for practical methods

to operate in an online setting raises significant questions about computational efficiency of

prediction procedures.

A complimentary approach to dealing with more complex selection models is to collect

additional information that will facilitate learning and inference. An approach to dealing with
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the problem of new users and users who may not be aware of certain items is to explicitly record

all of the items that each user views, listens to, reads, or purchases, regardless of whether ratings

are supplied for the items. The fact that a user listened to a particular song and chose not to

rate it is significantly more informative than simply knowing that a user did not rate a song.

An interesting alternative to the data model/selection framework is the conditional re-

stricted Boltzmann machine framework. The key to the RBM framework is the availability

of training ratings for items the user did not choose to rate. In this work, a random sample

of ratings was used to provide these ratings. It is doubtless that many users would object to

rating random items. However, it is certainly the case that some users are willing to provide

this type of data as evidenced by the more than 35, 000 users who participated in the Yahoo!

study.

The main avenues for further research with the conditional RBM model revolve around

the definition of the energy function. Like the CPT-v selection model, the cRBM/E-v model

specifies a fairly strict relationship between the ratings of user-selected and non user-selected

items when making predictions. Any number of additional terms may be included and their

effect on prediction accuracy assessed. An interesting line of inquiry would be to study the effect

of the amount of ratings for non-user selected items on the ability to learn conditional RBM

models with differently parameterized energy functions. We have also previously mentioned

the possibility of re-weighting the contrastive divergence gradients to help balance different

numbers of user-selected and non-user selected items.

7.2 Classification with Missing Features

In the second half of this thesis, we consider the problem of classification with missing features.

We consider several strategies for performing incomplete data classification including the use of

generative classification models, and the combination of standard discriminative methods with

imputation, reduced models, and response indicator augmentation. We introduce a generative

classifier for incomplete data based on linear discriminant analysis combined with a factor

analysis covariance model. We compare imputation, reduced models, and response indicator

augmentation combined with logistic regression, multi-layer neural networks, and kernel logistic

regression. We show that response augmentation has interesting properties when combined with

non-linear classifiers.

Synthetic data results illustrate the fact that zero imputation and unconditional mean im-

putation rarely work well with linear classifiers. With sufficient capacity, non-linear classifiers

can sometimes overcome poor imputation procedures. Multiple imputation was shown to work

well so long as the conditional distribution of missing data given observed data is approximately
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correct. The reduced models approach was also shown to work well when there is sufficient data

to reliably estimate a model for each response pattern. The synthetic data results illustrate

the important fact that if classes significantly overlap in a given observed data sub-space, no

classification method can perform well including multiple imputation and reduced models.

Results on real medical domain data show that many of the methods yield classification

accuracy that is not significantly better than baseline methods like zero imputation and mean

imputation. This may be partly due to the fact that the medical domain data sets do not

contain a large amount of missing data, and partly due to the fact that the medical domain

data sets are strongly imbalanced. Looking at the bigger picture; however, the best method on

each data set performs quite well in absolute terms.

The most interesting classification results were seen in the MNIST experiment. The MNIST

experiment used a relatively small number of high dimensional data cases with a significant

amount of missing data in each data case. The novel response augmented Gaussian kernel

logistic regression method obtained the best results in the MNIST experiment, followed by

Gaussian kernel logistic regression combined with mean imputation. In general, the classifica-

tion results show that learning a detailed model of the feature space can often be avoided and

good classification performance can still be obtained.

In terms of future research directions, it may be useful to consider other approaches for

dealing with the indefinite augmented Gaussian kernel. The present strategy of removing

negative eigenvalues from the kernel matrix is a fairly costly operation. Another option is to

consider other Gaussian-like kernels that are positive definite. Bhattacharya kernels, a special

case of probability product kernels [42], can be constructed to resemble the augmented Gaussian

kernel using relatively simple Gaussian or class conditional Gaussian models of the feature space,

and are always positive definite. A completely different classification framework that we have

not explored here, but might be amenable to dealing with missing features is boosting [22].

It would be quite interesting to consider an application of boosting using response augmented

decision stumps as the weak learners.

Semi-supervised learning deals with the problem of learning classifiers from both labeled

and unlabeled data [12]. The significance of semi-supervised learning stems from the fact that

in some domains there is an abundance of unlabeled data while labeled data is quite scarce. The

semi-supervised learning framework can be extended by simultaneously allowing missing data

in the features as well as the labels. Semi-supervised learning can also be made more difficult if

missing data in the labels or features is not missing at random. Semi-supervised learning along

with these variations provides yet another source of very interesting missing data problems in

machine learning.
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