
H311: Honors Colloquium – Introduction to
Algorithms

Lecture 2: Amortized Analysis

Marius Minea

University of Massachusetts Amherst

9 February 2021

Amortized Analysis: Overview
Usually, we analyze worst-case execution time:

I for an algorithm
I or individual data structure operations

Sometimes, the cost of an operation varies significantly

Counting each operation at maximum cost would needlessly
overestimate total running time

Amortized analysis computes the cost per operation,
for the entire algorithm

Sources and extra material:

CMU 15-451 Spring 2007 (Manuel Blum)
https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0206.pdf

Duke COMPSCI 330 Spring 2017 (D. Panigrahi)
https://www2.cs.duke.edu/courses/spring17/compsci330/Notes/UnionFindAmortize.pdf

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0206.pdf
https://www2.cs.duke.edu/courses/spring17/compsci330/Notes/UnionFindAmortize.pdf

Example: Extensible Array (Stack)

Consider an array that can grow with a push()operation

I if not full, push()is O(1)
I if full, array must be reallocated and copied =⇒ high cost

What is the overall cost of doing n push()operations?

Depends on when / how much the array is extended.

If every resize doubles the array, cost of resizing is
1 + 2 + 4 + . . . + 2i with 2i < n (end size). Total < 2n

Amortized cost per operation is < 1 + 2 = 3.

Our computation used aggregate method (sum, then average)

Accounting Method (“piggy-banking”)

Idea: we have cheap and expensive operations.

For each cheap operation, budget more than its actual cost

Use savings to pay for expensive operations (never go negative)

Budget cost 3 instead of 1 for array push()

When growing L to 2L, L/2 elements are new since last growth
=⇒ accumulated 2 · L/2 pays for copying cost

Variant: potential method: define nonnegative function that
depends only on state of the system (like accumulated savings)

Binary Counter

Count: 0, 1, 10, 11, 100, 101, . . .

Every bit flip has cost 1.
Each increment is O(log n) coarse bound, flips may be few
What is the amortized cost per increment ?

Aggregate method:
bit 0 flipped n times
bit 1 flipped every other time: n/2, etc.
Total: n + n/2 + n/4 + ... < 2n =⇒ amortized cost 2 (O(1))

Accounting method:
Budget 2 (not 1) when flipping 0 to 1 (once on every increment)
Use 1 for every flip from 1 to 0
Can’t go negative (can flip at most all ones) =⇒ same result

Binary Counter (high bit, high cost)

Now assume cost 2k to flip bit k.

Single increment could cost 1 + 2 + ... + 2log n−1 ' n

Amortized cost is log n (by aggregation):

n + 2 · n/2 + 4 · n/4 + . . . = n log n

Amortized Dictionary (Searchable Array)

Alternative to balanced search tree.

Keep all items (numbers) in sorted array segments of size 2k,
given by binary representation of element count n.
(e.g. for 19, lengths 16 + 2 + 1)

Search time is log 2 + log 4 + ... + log n = O(log2 n)

Adding a new element: create array segment of length 1 and
propagate up by merging equal-length arrays

e.g., for 20, merge 1 + 1 = 2, merge 2 + 2 = 4. Result: 16 + 4.

Cost to merge: 2 · 2k to merge arrays of length 2k

=⇒ like binary counter with cost 2k for bit k.

=⇒ amortized cost is O(log n) per insert.

Union-Find Data Structure

Clever data structure to maintain equivalence classes:

I Find(v): return name of set containing v

I Union(A, B): merge two sets

I Each set elects a representative to act as the “name” of the set

I Nodes point to their representative

I Initially, every node points to itself

a b c d e f

Union-Find Data Structure

Example: gradually link all nodes into a spanning tree

a

b

e

c

f

d
8

9
6

4
7

1

3
2

5

I Union(e, f)
I Union(c, d)
I Union(c, f)
I Union(b, c)
I Union(a, b)

I Time for union? O(1): update one pointer

Union-Find Data Structure

a f

db e

c

I Union(a, f): which pointer should be updated?
I Convention: smaller set changes its name
I Time for Find? Equal to depth of tree

Union-Find Data Structure

a f

db e

c

I Claim: let d = depth and k = # nodes in set.
I Then d ≤ log2(k) =⇒ Find is O(log n)
I Proof by induction

Union-Find Data Structure

a f

db e

c

I Invariant: let d = depth and k = # nodes in a given set.
Then k ≥ 2d

I Base case: d = 0, k = 1 X
I Induction step: consider union of sets of size kL < kR with

depths dL and dR

I New depth is d = max{dL + 1, dR}
I k = kL + kR ≥ 2kL ≥ 2 · 2dL ≥ 2dL+1

I k = kL + kR ≥ kR ≥ 2dR

I Therefore k ≥ 2d =⇒ d ≤ log2(k)

Union-Find: Constant-Time Find

Alternate goal:
Find in O(1), using star graphs (each node points directly to root).

Time for Union ?

Budget one extra unit when joining Ts with Tl (|Ts| ≤ |Tl|)

An element can be joined ≤ log n times (since size doubles)

=⇒ total cost of union ≤ n log n, amortized log n.

Union-Find with Path Compression

Use trees with parent pointer. When going up on Find,
all nodes on path get linked directly to root (trees get “bushier”)

Amortized complexity of Find: log∗ n (iterated logarithm), where:

log∗ 1 = 0, log∗ n = 1 + log∗(log n), grows very slowly:
log∗ 2 = 1, log∗ 22 = 2, log∗ 24 = 3, log∗ 216 = 4, log∗ 265536 = 5, ...

Keep doing union by rank (depth); if merging two equal-rank trees,
rank of root increases by 1.

Tree of rank r has at least 2r nodes. At most n/2r roots of rank 2r

(if all roots of rank r have trees with 2r nodes).

Group nodes into “buckets” by log∗ r. In bucket [k + 1, 2k] at most
n/2k+1 + n/2k+2 + ... = n/2k nodes. Path cost for each ≤ 2k.
=⇒ cost n per bucket.

Total effort spent is O(n log∗ n) =⇒ O(log∗ n) amortized

