
COMPSCI H311: Honors Colloquium –
Introduction to Algorithms

Lecture 1: Algorithms for Strongly Connected Components

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

February 2, 2021

Colloquium Topics (tentative)

1. Strongly Connected Components.
2. Amortized Analysis
3. Huffman Codes and Data Compression
4. Generating Functions for Recurrence Relations
5. Convolutions and the Fast Fourier Transform
6. RNA Secondary Structure Prediction
7. Advanced Network Flow Algorithms
8. Network Flow Applications
9. Co-NP and the Asymmetry of NP

10. Space complexity and PSPACE
11. Approximation Algorithms
12. Local Search
13. Randomization Algorithms

Logistics

Grading:

70% homeworks (∼1 problem / week)

30% final project (discuss/agree topic))

Today

Strongly Connected Components – Three Algorithms

I Tarjan
I Kosaraju
I Path-based

Strongly Connected Components
13.3. THE WEB AS A DIRECTED GRAPH 387

I'm a student
at Univ. of X

Company Z's
home page

Our
Founders

Press
Releases

Contact Us

Univ. of X

Classes

Networks

Networks
class blog

Blog post about
college rankings

I teach at
Univ. of X

USNews:
College

Rankings

USNews:
Featured
Colleges

Blog post
about

Company Z

I'm a applying to
college

My song
lyrics

Figure 13.6: A directed graph with its strongly connected components identified.

In a SCC, there is a path from
every node x to every node y .

A SCC is a maximal subgraph
with this property.

Equivalent: ∀x , y , path x y
and path y x (swap x and y)

Trivial SCC: single node

How to Compute a SCC?

Idea 1: path x y and y x :
compute set of nodes reachable from x
compute set of nodes backwards reachable from x
intersect

Problem: set intersection may be expensive

Idea 2: look for cycles (all nodes in a cycle are in same SCC).
DFS from some node x : any back edge closes a cycle.

Issue: what about back edges further up / down ?

All three algorithms: recursive DFS, plus extra bookkeeping

Tarjan’s Algorithm (1972)

Recover SCC as subtrees of DFS spanning forest
Root of SCC = first SCC node reached by DFS

I number nodes as discovered (v.index)
I keep explicit stack of visited nodes

(may not immediately pop on return from recursion);
I keep v.onStack flag for each node v

Invariant: node stays on stack iff it has path to ancestor
v.lowlink: highest known reachable ancestor (w/ lowest index)
– keep on stack if v.lowlink < v.index
– remove / set as root if v.lowlink = v.index

Tarjan’s Algorithm (cont’d)

Updates when reaching successor v → w :
if w unexplored tree edge

explore
v.lowlink = min(v.lowlink, w.lowlink)

(if w reaches ancestor of v , so can v through w)
else if w is on stack w is above v (back edge)

v.lowlink = min(v.lowlink, w.index)
(have found path from v to ancestor w).
else no change forward/cross edge

Examples

Figure: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_

components_algorithm

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

Tarjan’s Algorithm (cont’d)

index = 0; S = empty
for all v do

if v not visited then
SCC(v)

function SCC(v)
v.lowlink = v.index = ++index
S.push(v); v.onStack = true;
for all neighbors w of v do

if w not visited then
SCC(w)
v.lowlink = min(v.lowlink, w.lowlink)

else if w.onStack then
v.lowlink = min(v.lowlink, w.index)

if v.lowlink = v.index then
pop nodes from S until v into SCC(v)

Kosaraju SCC Algorithm (1978)

Two DFS calls, on graph and reversed graph.

In DFS, prepend nodes to list L in postorder (fully explored).
L will have nodes in reverse order of finishing times.

Then DFS the reverse graph, each tree is a SCC.

Insight:
If there is only a path u v , then u will be ahead of v in list L
We can’t reach v from u in GR =⇒ different SCCs

If there are paths u v and v u, there could be any order.
If we reach v when searching from u in GR , then there is also a
v u path in G , so they are in the same SCC.

Example

Figure: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_

components_algorithm

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

Path-Based SCC Algorithm (Dijkstra 1976)

Maintains two stacks (in addition to recursion)
– stack S: all vertices unassigned to an SCC, in order reached
– stack P: vertices that are not known to belong to different SCCs
(new path)
– and running number for each vertex (in order discovered)

function search(v)
push v onto S and P
for all neighbors w of v do

if w not visited then
search(w)

else if w unassigned then
pop from P until top(P) has number ≤ w

if v = top(P) then
pop from S until v into new SCC

Intuition: nodes on a path segment P contracted to single node

Example 1/21/20, 8(46 AMPII: S0020-0190(00)00051-X | Elsevier Enhanced Reader

Page 2 of 9https://reader.elsevier.com/reader/sd/pii/S002001900000051X…FEA7AD15BBF9CC7838FD99C11CCF0F39FF25BF91FB67D7227CCB99B7762

Wrap-Up and Similar Algorithms

Complexity: all these algorithms have linear complexity,
O(|V |+ |E |)
(based on DFS, plus constant-time work per node or edge)

In undirected graphs: biconnected components
= subgraphs that stay connected when removing any one node

Biconnected components have articulation points in common
(node that when removed disconnects the graph)

