
H250: Honors Colloquium – Introduction to Computation

Fixpoints and Applications

Marius Minea
marius@cs.umass.edu

mailto:marius@cs.umass.edu


Fixpoint Definition

Given f : X → X , a fixpoint (fixed point) of f is a value c with
f (c) = c.

A function may have 0, 1, or many fixpoints.
Examples:

fixpoint for a real-valued function: intersection with y = x
fixpoint for a permutation of 1 .. n

Think of the function as a transformation (which may be repeated)
Fixpoint: no change



Intuitive Examples

All-pairs shortest paths in graph

Simpler: Path relation in graph

Questions:
When do such computations terminate?

How to express this with fixpoints?



Partially Ordered Sets
Recall: partial order on a set:

reflexive
antisymmetric
transitive

A set A together with a partial order v on A is called a partially
ordered set (poset) 〈A,v〉



Lattices
Many familiar partial orders have additional properties:

- any two elements have a unique least upper bound (join t)
least x with a v x and b v x

- any two elements have a unique greatest lower bound (meet u)
A poset with these properties is called a lattice.
Inductively: any finite set has a least upper / greatest lower bound.
Complete lattice: any subset has least upper/greatest lower bound.

=⇒ lattice has a top > and bottom ⊥ element.



Iterating a function

Define f n(x) = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

(x).

On a finite set, iteration will
- close a cycle, or
- reach a fixpoint (particular case)

For an infinite set, iteration may be infinite (none of the above)



Monotonic Functions

Given a poset 〈S,v〉, a function f : S → S is monotonic if it is
either

- increasing, ∀x∀y : x v y → f (x) v f (y)
- decreasing, ∀x∀y : x v y → f (x) w f (y)



Knaster-Tarski Fixpoint Theorem

A monotonic function on a complete lattice has a least fixpoint
and a greatest fixpoint.
More generally:
The set of fixpoints of a monotonic function on a complete lattice
is also a complete lattice.

Proof (for lfp/gfp): Assume for simplicity f is increasing.
Consider the sequence ⊥, f (⊥), f 2(⊥), . . ..

Then ⊥ v x for any x , by definition, so ⊥ v f (⊥).

By induction, f n(⊥) v f n+1(⊥).

Take the set P = {x : x v f (x)}. Clearly ⊥ ∈ P as seen above.
Also, P contains all fixpoints.



Knaster-Tarski Proof (cont’d.)

P has a least upper bound u = tP.
Then for all x ∈ P, we have x v u, so x v f (x) v f (u).
So f (u) is also an upper bound, but u v f (u) (being the least), so
then u ∈ P.

Then f (u) v f (f (u)) (by monotonicity), so f (u) ∈ P and then
f (u) v u (as upper bound), so f (u) = u.
So u is a fixpoint, and since all fixpoints are in P, it is the greatest
fixpoint.

Symmetric argument for greatest lower bound.

If the lattice has finite height (in particular, finite), can find
fixpoints by repeated iteration: f n(⊥) (least) and f n(>) (greatest).



Example: Transitive Closure

Transitive closure of a relation R: least relation that includes R
and is transitive:
R+ = R ∪ R2 ∪ . . . ∪ Rn ∪ . . ..

How to write as fixpoint? Think: path = edge or path + edge

Express this recursion as function on relations: f (X ) = R ∪ X ◦ R.
Then f (R) = R ∪ R2, f 2(R) = R ∪ R2 ∪ R3, etc.

R+ = lfp X . R ∪ X ◦ R (least fixpoint wrt X)



Application: Program Analysis

int a = 0, b, c = 0;
do {

b = a + 1;
c = c + b;
a = 2 * b;

} while (a < 100);
return c;

a = 0

b = a + 1

c = c + b

a = 2 * b

return c
a≥100

Reaching Definitions: What are all assignments that may reach the
current point without being overwritten by other assignments?

Live Variables: For every program point, which variables will have
their values used on at least one path from that point?

Solved by a fixpoint iteration on control flow graph.



Application: Temporal Logic Model Checking

Temporal Logic: statements about what may/must happen on an
some/all execution paths of a system.
EXp: p holds in some next state
AXp: p holds in all next states
AFp: p holds sometime in the future on all paths
EGp: p holds forever on some path etc.

All of these have fixpoint characterizations =⇒ can use to
compute state sets

EGp = p ∧ EXEGp
As fixpoint: EGp = gfp f . p ∧ EXf



Programming Languages: Defining Recursion

Lambda Calculus (Alonzo Church, 1930s)
e ::= x variable

| λx .e function abstraction (definition), think: fun x -> e
| e1 e2 function application

Think: simplest possible functional language



Recursion in Lambda-Calculus

Usually, recursion requires naming the recursive object.
But λ-calculus does not let us introduce names...

Start from the diverging self-application (λx . x x)(λx . x x)

Define a closed term that applies a function to an argument
Y = λf . (λx . f (x x))(λx . f (x x))

Y is called fixpoint combinator, because Y f = f (Y f )
Can use Y to define recursive functions!

Take fact(n) = if n = 0 then 1 else n · fact(n − 1)
Rewrite as F = λf . λn . if n = 0 then 1 else n · f (n − 1)

Then define fact = Y F. Expanding F = Y F stops at n = 0 which
does not re-evaluate argument f (here, Y F).


