
H250: Honors Colloquium – Introduction to Computation

Axiomatization of Logic. Truth and Proof. Resolution

Marius Minea
marius@cs.umass.edu

mailto:marius@cs.umass.edu

Motivation: Determining Truth

In CS250, we started with truth table proofs.

Propositional formula: can always do truth table (even if large)

Predicate formula: can’t do truth tables (infinite possibilities)
⇒ must use other proof rules

How many do we need? (best: few)
Are they enough?
Can we prove everything?

Axiomatization helps answer these questions

Motivation: Determining Truth

In CS250, we started with truth table proofs.

Propositional formula: can always do truth table (even if large)

Predicate formula: can’t do truth tables (infinite possibilities)
⇒ must use other proof rules

How many do we need? (best: few)
Are they enough?
Can we prove everything?

Axiomatization helps answer these questions

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

Symbols of propositional logic:
propositions: p, q, r (usually lowercase letters)
operators (logical connectives): negation ¬, implication →
parentheses ()

Formulas of propositional logic: defined by structural induction
(how to build complex formulas from simpler ones)

A formula (compound proposition) is:
any proposition (aka atomic formula or variable)
(¬α) where α is a formula
(α→ β) if α and β are formulas

Implication and negation suffice!

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

Symbols of propositional logic:
propositions: p, q, r (usually lowercase letters)
operators (logical connectives): negation ¬, implication →
parentheses ()

Formulas of propositional logic: defined by structural induction
(how to build complex formulas from simpler ones)

A formula (compound proposition) is:
any proposition (aka atomic formula or variable)
(¬α) where α is a formula
(α→ β) if α and β are formulas

Implication and negation suffice!

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

Symbols of propositional logic:
propositions: p, q, r (usually lowercase letters)
operators (logical connectives): negation ¬, implication →
parentheses ()

Formulas of propositional logic: defined by structural induction
(how to build complex formulas from simpler ones)

A formula (compound proposition) is:
any proposition (aka atomic formula or variable)
(¬α) where α is a formula
(α→ β) if α and β are formulas

Implication and negation suffice!

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

Symbols of propositional logic:
propositions: p, q, r (usually lowercase letters)
operators (logical connectives): negation ¬, implication →
parentheses ()

Formulas of propositional logic: defined by structural induction
(how to build complex formulas from simpler ones)

A formula (compound proposition) is:
any proposition (aka atomic formula or variable)
(¬α) where α is a formula
(α→ β) if α and β are formulas

Implication and negation suffice!

Definitions Should Be Minimal

Fewest cases ⇒ simplicity
(all future reasoning must cover all cases)

Can define all other connectives in terms of ¬ and →:

α ∧ β def= ¬(α→ ¬β) (AND)

α ∨ β def= ¬α→ β (OR)

α↔ β
def= (α→ β) ∧ (β → α) (equivalence)

What is a Proof? (First Try)

Let H be a set of formulas (hypotheses, premises).
A deduction (or proof) from H is a sequence of formulas
(statements) S1, . . . ,Sn, such that every formula Sk is
I a premise : Sk ∈ H
I or follows from previous statements by a inference rule

Which inference rules to use? (again, few is good!)

A A→ B
B modus ponens

(from A and A→ B we derive/infer B

Modus Ponens is enough for propositional (and predicate) logic

What is a Proof? (First Try)

Let H be a set of formulas (hypotheses, premises).
A deduction (or proof) from H is a sequence of formulas
(statements) S1, . . . ,Sn, such that every formula Sk is
I a premise : Sk ∈ H
I or follows from previous statements by a inference rule

Which inference rules to use? (again, few is good!)

A A→ B
B modus ponens

(from A and A→ B we derive/infer B

Modus Ponens is enough for propositional (and predicate) logic

What is a Proof? (First Try)

Let H be a set of formulas (hypotheses, premises).
A deduction (or proof) from H is a sequence of formulas
(statements) S1, . . . ,Sn, such that every formula Sk is
I a premise : Sk ∈ H
I or follows from previous statements by a inference rule

Which inference rules to use? (again, few is good!)

A A→ B
B modus ponens

(from A and A→ B we derive/infer B

Modus Ponens is enough for propositional (and predicate) logic

Proof Axioms

What about statements that need no premises at all ?
Need a base case for our reasoning: axioms
Actual definition: A deduction (or proof) from H is a sequence of
formulas S1, . . . ,Sn, such that every formula Sk is
I an axiom
I a premise : Sk ∈ H
I or follows from previous statements by a deduction rule

Notation: H ` Sn (Sn can be derived from H)

Axioms of propositional logic:
A1: α→ (β → α)
A2: (α→ (β → γ))→ ((α→ β)→ (α→ γ))
A3: (¬β → ¬α)→ (α→ β)

α, β, γ are any formulas

A Sample Deduction

We prove A→ A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A→ ((A→ A)→ A)) A1, α = A, β = A→ A

((2) A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))
A2, α = γ = A, β = A→ A

(3) (A→ (A→ A))→ (A→ A) MP(1,2)
(4) A→ (A→ A) A1, α = β = A
(5) A→ A MP(3,4)

We can also show the Deduction Theorem
If H ∪ {A} ` B then H ` A→ B

(assuming premise and proving conclusion shows implication)

A Sample Deduction

We prove A→ A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A→ ((A→ A)→ A)) A1, α = A, β = A→ A
((2) A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))

A2, α = γ = A, β = A→ A

(3) (A→ (A→ A))→ (A→ A) MP(1,2)
(4) A→ (A→ A) A1, α = β = A
(5) A→ A MP(3,4)

We can also show the Deduction Theorem
If H ∪ {A} ` B then H ` A→ B

(assuming premise and proving conclusion shows implication)

A Sample Deduction

We prove A→ A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A→ ((A→ A)→ A)) A1, α = A, β = A→ A
((2) A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))

A2, α = γ = A, β = A→ A
(3) (A→ (A→ A))→ (A→ A) MP(1,2)

(4) A→ (A→ A) A1, α = β = A
(5) A→ A MP(3,4)

We can also show the Deduction Theorem
If H ∪ {A} ` B then H ` A→ B

(assuming premise and proving conclusion shows implication)

A Sample Deduction

We prove A→ A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A→ ((A→ A)→ A)) A1, α = A, β = A→ A
((2) A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))

A2, α = γ = A, β = A→ A
(3) (A→ (A→ A))→ (A→ A) MP(1,2)
(4) A→ (A→ A) A1, α = β = A

(5) A→ A MP(3,4)

We can also show the Deduction Theorem
If H ∪ {A} ` B then H ` A→ B

(assuming premise and proving conclusion shows implication)

A Sample Deduction

We prove A→ A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A→ ((A→ A)→ A)) A1, α = A, β = A→ A
((2) A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))

A2, α = γ = A, β = A→ A
(3) (A→ (A→ A))→ (A→ A) MP(1,2)
(4) A→ (A→ A) A1, α = β = A
(5) A→ A MP(3,4)

We can also show the Deduction Theorem
If H ∪ {A} ` B then H ` A→ B

(assuming premise and proving conclusion shows implication)

A Sample Deduction

We prove A→ A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A→ ((A→ A)→ A)) A1, α = A, β = A→ A
((2) A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))

A2, α = γ = A, β = A→ A
(3) (A→ (A→ A))→ (A→ A) MP(1,2)
(4) A→ (A→ A) A1, α = β = A
(5) A→ A MP(3,4)

We can also show the Deduction Theorem
If H ∪ {A} ` B then H ` A→ B

(assuming premise and proving conclusion shows implication)

Proofs are purely syntactic!

We have done this without defining truth values, truth tables, etc.

Finding a proof may be difficult (creativity, heuristics/tactics, etc.)

Checking a proof is mechanical, based on simple string operations
(check that formulas “pattern match” structure of axioms/rules)

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:
v(p) defined for any atomic proposition p

v(¬α) =
{

T if v(α) = F
F if v(α) = T

v(α→ β) =
{

F if v(α) = T and v(β) = F
T otherwise

An interpretation is a truth assignment for the propositions of a
formula.

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:
v(p) defined for any atomic proposition p

v(¬α) =
{

T if v(α) = F
F if v(α) = T

v(α→ β) =
{

F if v(α) = T and v(β) = F
T otherwise

An interpretation is a truth assignment for the propositions of a
formula.

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:
v(p) defined for any atomic proposition p

v(¬α) =
{

T if v(α) = F
F if v(α) = T

v(α→ β) =
{

F if v(α) = T and v(β) = F
T otherwise

An interpretation is a truth assignment for the propositions of a
formula.

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:
v(p) defined for any atomic proposition p

v(¬α) =
{

T if v(α) = F
F if v(α) = T

v(α→ β) =
{

F if v(α) = T and v(β) = F
T otherwise

An interpretation is a truth assignment for the propositions of a
formula.

Truth and Semantic Consequence

An interpretation is a truth assignment for the propositions of a
formula.

A formula may be true or false in an interpretation.
An interpretation satisfies the formula or not.
A formula true in all interpretations is valid (a tautology).

How do we relate the truth values of different formulas?

A set of formulas H = {H1, . . . ,Hn} entails (semantically implies)
a formula C if any interpretation that satisfies H satisfies C .
We say C is a semantic consequence (entailed by) H.

Notation: H |= C

This corresponds to our truth table proofs.

Truth and Semantic Consequence

An interpretation is a truth assignment for the propositions of a
formula.

A formula may be true or false in an interpretation.
An interpretation satisfies the formula or not.
A formula true in all interpretations is valid (a tautology).

How do we relate the truth values of different formulas?

A set of formulas H = {H1, . . . ,Hn} entails (semantically implies)
a formula C if any interpretation that satisfies H satisfies C .
We say C is a semantic consequence (entailed by) H.

Notation: H |= C

This corresponds to our truth table proofs.

Soundness and Completess

H ` C : deduction (purely syntactic, using inference rules)
H |= C : entailment (semantic, using truth values)
Ideally, we’d like these notions to match.

Soundness: If H ` C , then H |= C : every theorem is valid.
(Everything that we prove is true. Our logic is sound, not
contradictory).

Completeness: If H |= C , then H ` C : everything true is provable

Propositional logic is both sound and complete.

Soundness and Completess

H ` C : deduction (purely syntactic, using inference rules)
H |= C : entailment (semantic, using truth values)
Ideally, we’d like these notions to match.

Soundness: If H ` C , then H |= C : every theorem is valid.
(Everything that we prove is true. Our logic is sound, not
contradictory).

Completeness: If H |= C , then H ` C : everything true is provable

Propositional logic is both sound and complete.

Soundness and Completess

H ` C : deduction (purely syntactic, using inference rules)
H |= C : entailment (semantic, using truth values)
Ideally, we’d like these notions to match.

Soundness: If H ` C , then H |= C : every theorem is valid.
(Everything that we prove is true. Our logic is sound, not
contradictory).

Completeness: If H |= C , then H ` C : everything true is provable

Propositional logic is both sound and complete.

Predicate (First Order) Logic: Syntax

Terms:
variable v
f (t1, · · · , tn) f is an n-ary function, t1, · · · , tn are terms

Example: parent(x), gcd(x , y), max(min(x , y), z)
constant c: special case, zero-argument function

Formulas (well-formed formulas):

P(t1, · · · , tn) P is an n-ary predicate, t1, · · · , tn terms
Example: contains(empty , x), divide(gcd(x , y), x))
proposition p: special case, zero-argument predicate

¬α α is a formula
α→ β α, β formulas
∀v α v variable, α formula: universal quantification

Example: ∀x ¬contains(empty , x), ∀x∀y divide(gcd(x , y), x)

Predicate (First Order) Logic: Syntax

Terms:
variable v
f (t1, · · · , tn) f is an n-ary function, t1, · · · , tn are terms

Example: parent(x), gcd(x , y), max(min(x , y), z)
constant c: special case, zero-argument function

Formulas (well-formed formulas):

P(t1, · · · , tn) P is an n-ary predicate, t1, · · · , tn terms
Example: contains(empty , x), divide(gcd(x , y), x))
proposition p: special case, zero-argument predicate

¬α α is a formula
α→ β α, β formulas

∀v α v variable, α formula: universal quantification
Example: ∀x ¬contains(empty , x), ∀x∀y divide(gcd(x , y), x)

Predicate (First Order) Logic: Syntax

Terms:
variable v
f (t1, · · · , tn) f is an n-ary function, t1, · · · , tn are terms

Example: parent(x), gcd(x , y), max(min(x , y), z)
constant c: special case, zero-argument function

Formulas (well-formed formulas):

P(t1, · · · , tn) P is an n-ary predicate, t1, · · · , tn terms
Example: contains(empty , x), divide(gcd(x , y), x))
proposition p: special case, zero-argument predicate

¬α α is a formula
α→ β α, β formulas
∀v α v variable, α formula: universal quantification

Example: ∀x ¬contains(empty , x), ∀x∀y divide(gcd(x , y), x)

Proofs in Predicate Logic

Definition of deduction or proof is the same.

Need new axioms related to predicates and quantifiers
A1: α→ (β → α) (A1-A3 from propositional logic)
A2: (α→ (β → γ))→ ((α→ β)→ (α→ γ))
A3: (¬β → ¬α)→ (α→ β)

A4: ∀x(α→ β)→ (∀xα→ ∀xβ)
A5: ∀xα→ α[x ← t] if x can be substituted with t in α
A6: α→ ∀xα if x is not free in α

Proofs in Predicate Logic

Definition of deduction or proof is the same.

Need new axioms related to predicates and quantifiers
A1: α→ (β → α) (A1-A3 from propositional logic)
A2: (α→ (β → γ))→ ((α→ β)→ (α→ γ))
A3: (¬β → ¬α)→ (α→ β)
A4: ∀x(α→ β)→ (∀xα→ ∀xβ)
A5: ∀xα→ α[x ← t] if x can be substituted with t in α
A6: α→ ∀xα if x is not free in α

Structures

A structure (interpretation) I consists of:
a nonempty set U called universe or domain of I

(the set of values that the variables can take)
a value cI ∈ U for every constant symbol c,
a function fI : Un → U for every n-ary function symbol f ,
a relation PI ⊆ Un for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V → U that assigns to every
variable a value from the universe.

Structures

A structure (interpretation) I consists of:
a nonempty set U called universe or domain of I

(the set of values that the variables can take)

a value cI ∈ U for every constant symbol c,
a function fI : Un → U for every n-ary function symbol f ,
a relation PI ⊆ Un for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V → U that assigns to every
variable a value from the universe.

Structures

A structure (interpretation) I consists of:
a nonempty set U called universe or domain of I

(the set of values that the variables can take)
a value cI ∈ U for every constant symbol c,

a function fI : Un → U for every n-ary function symbol f ,
a relation PI ⊆ Un for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V → U that assigns to every
variable a value from the universe.

Structures

A structure (interpretation) I consists of:
a nonempty set U called universe or domain of I

(the set of values that the variables can take)
a value cI ∈ U for every constant symbol c,
a function fI : Un → U for every n-ary function symbol f ,

a relation PI ⊆ Un for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V → U that assigns to every
variable a value from the universe.

Structures

A structure (interpretation) I consists of:
a nonempty set U called universe or domain of I

(the set of values that the variables can take)
a value cI ∈ U for every constant symbol c,
a function fI : Un → U for every n-ary function symbol f ,
a relation PI ⊆ Un for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V → U that assigns to every
variable a value from the universe.

Structures

A structure (interpretation) I consists of:
a nonempty set U called universe or domain of I

(the set of values that the variables can take)
a value cI ∈ U for every constant symbol c,
a function fI : Un → U for every n-ary function symbol f ,
a relation PI ⊆ Un for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V → U that assigns to every
variable a value from the universe.

Structures

A structure (interpretation) I consists of:
a nonempty set U called universe or domain of I

(the set of values that the variables can take)
a value cI ∈ U for every constant symbol c,
a function fI : Un → U for every n-ary function symbol f ,
a relation PI ⊆ Un for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V → U that assigns to every
variable a value from the universe.

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations

∀xϕ is true iff ϕ true when substituting x with any value d ∈ U.

A model for a formula ϕ is a structure for which the formula is
true for any variable assignment.
Notation: I |= ϕ

A tautology is a formula that is true in any interpretation.

The number of interpretations (and assignment) is infinite!
⇒ can’t check truth exhaustively ⇒ deductive proofs essential

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations

∀xϕ is true iff ϕ true when substituting x with any value d ∈ U.

A model for a formula ϕ is a structure for which the formula is
true for any variable assignment.
Notation: I |= ϕ

A tautology is a formula that is true in any interpretation.

The number of interpretations (and assignment) is infinite!
⇒ can’t check truth exhaustively ⇒ deductive proofs essential

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations

∀xϕ is true iff ϕ true when substituting x with any value d ∈ U.

A model for a formula ϕ is a structure for which the formula is
true for any variable assignment.
Notation: I |= ϕ

A tautology is a formula that is true in any interpretation.

The number of interpretations (and assignment) is infinite!
⇒ can’t check truth exhaustively ⇒ deductive proofs essential

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations

∀xϕ is true iff ϕ true when substituting x with any value d ∈ U.

A model for a formula ϕ is a structure for which the formula is
true for any variable assignment.
Notation: I |= ϕ

A tautology is a formula that is true in any interpretation.

The number of interpretations (and assignment) is infinite!
⇒ can’t check truth exhaustively ⇒ deductive proofs essential

Soundness and Completess

Let H be a set of premises, and I an interpretation.

We say I |= H if I is a model for every formula in H.

We say H |= C (read: H (semantically) implies C) if for every
interpretation I

I |= H implies I |= C
(C is true in all interpretations that satisfy all premises in H).

Soundness: If H ` C , then H |= C : every theorem is valid.

Completeness: If H |= C , then H ` C : everything true is provable

Predicate logic is both sound and complete.

Important: Completeness says we can prove something that’s true.
We may not be able to disprove something false
(thus decide if something unknown is true or false).

Soundness and Completess

Let H be a set of premises, and I an interpretation.

We say I |= H if I is a model for every formula in H.

We say H |= C (read: H (semantically) implies C) if for every
interpretation I

I |= H implies I |= C
(C is true in all interpretations that satisfy all premises in H).

Soundness: If H ` C , then H |= C : every theorem is valid.

Completeness: If H |= C , then H ` C : everything true is provable

Predicate logic is both sound and complete.

Important: Completeness says we can prove something that’s true.
We may not be able to disprove something false
(thus decide if something unknown is true or false).

Soundness and Completess

Let H be a set of premises, and I an interpretation.

We say I |= H if I is a model for every formula in H.

We say H |= C (read: H (semantically) implies C) if for every
interpretation I

I |= H implies I |= C
(C is true in all interpretations that satisfy all premises in H).

Soundness: If H ` C , then H |= C : every theorem is valid.

Completeness: If H |= C , then H ` C : everything true is provable

Predicate logic is both sound and complete.

Important: Completeness says we can prove something that’s true.
We may not be able to disprove something false
(thus decide if something unknown is true or false).

Proof by Resolution

A formula is valid iff its negation is a contradiction.

We can prove a theorem by contradiction showing that its negation
is unsatisfiable

Consider hypotheses A1,A2, . . . ,An, conclusion C and the theorem
A1 ∧ A2 . . . ∧ An → C

i.e., together, premises A1,A2, . . .An imply conclusion C

Negation of implication: ¬(H → C) = ¬(¬H ∨ C) = H ∧ ¬C

So we show A1 ∧ A2 . . . ∧ An ∧ ¬C is a contradiction
We can systematically do this by the resolution method.

Proof by Resolution

A formula is valid iff its negation is a contradiction.

We can prove a theorem by contradiction showing that its negation
is unsatisfiable

Consider hypotheses A1,A2, . . . ,An, conclusion C and the theorem
A1 ∧ A2 . . . ∧ An → C

i.e., together, premises A1,A2, . . .An imply conclusion C

Negation of implication: ¬(H → C) = ¬(¬H ∨ C) = H ∧ ¬C

So we show A1 ∧ A2 . . . ∧ An ∧ ¬C is a contradiction
We can systematically do this by the resolution method.

Proof by Resolution

A formula is valid iff its negation is a contradiction.

We can prove a theorem by contradiction showing that its negation
is unsatisfiable

Consider hypotheses A1,A2, . . . ,An, conclusion C and the theorem
A1 ∧ A2 . . . ∧ An → C

i.e., together, premises A1,A2, . . .An imply conclusion C

Negation of implication: ¬(H → C) = ¬(¬H ∨ C) = H ∧ ¬C

So we show A1 ∧ A2 . . . ∧ An ∧ ¬C is a contradiction
We can systematically do this by the resolution method.

Resolution in propositional logic

Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and ¬p).

p ∨ A ¬p ∨ B
A ∨ B resolution

“From clauses p ∨ A and ¬p ∨ B we derive clause A ∨ B”

Recall: clause = disjunction ∨ of literals (propositions or negations)

New clause = resolvent of the two clauses with respect to p
Example: resp(p ∨ q ∨ ¬r ,¬p ∨ s) = q ∨ ¬r ∨ s

Modus ponens can be seen as a special case of resolution:
p ∨ false ¬p ∨ q

false ∨ q
Likewise, hypothetical syllogism (rewrite implication using ∨)

Resolution in propositional logic

Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and ¬p).

p ∨ A ¬p ∨ B
A ∨ B resolution

“From clauses p ∨ A and ¬p ∨ B we derive clause A ∨ B”

Recall: clause = disjunction ∨ of literals (propositions or negations)

New clause = resolvent of the two clauses with respect to p
Example: resp(p ∨ q ∨ ¬r ,¬p ∨ s) = q ∨ ¬r ∨ s

Modus ponens can be seen as a special case of resolution:
p ∨ false ¬p ∨ q

false ∨ q
Likewise, hypothetical syllogism (rewrite implication using ∨)

Resolution in propositional logic

Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and ¬p).

p ∨ A ¬p ∨ B
A ∨ B resolution

“From clauses p ∨ A and ¬p ∨ B we derive clause A ∨ B”

Recall: clause = disjunction ∨ of literals (propositions or negations)

New clause = resolvent of the two clauses with respect to p
Example: resp(p ∨ q ∨ ¬r ,¬p ∨ s) = q ∨ ¬r ∨ s

Modus ponens can be seen as a special case of resolution:
p ∨ false ¬p ∨ q

false ∨ q
Likewise, hypothetical syllogism (rewrite implication using ∨)

Resolution is a valid proof rule

p ∨ A ¬p ∨ B
A ∨ B resolution

{p ∨ A,¬p ∨ B} |= A ∨ B
A valid inference rule:
any assignment making premises true also makes conclusion true

Proof by cases: for p = T , we must show B |= A ∨ B:
if B = T , then also A ∨ B = T (valid)

case p = F is symmetric, so the rule is valid

Corollary: if A ∨ B is a contradiction, so is (p ∨ A) ∧ (¬p ∨ B)
if resolution reaches contradiction, we started from a contradiction

Resolution is a valid proof rule

p ∨ A ¬p ∨ B
A ∨ B resolution

{p ∨ A,¬p ∨ B} |= A ∨ B
A valid inference rule:
any assignment making premises true also makes conclusion true

Proof by cases: for p = T , we must show B |= A ∨ B:
if B = T , then also A ∨ B = T (valid)

case p = F is symmetric, so the rule is valid

Corollary: if A ∨ B is a contradiction, so is (p ∨ A) ∧ (¬p ∨ B)
if resolution reaches contradiction, we started from a contradiction

Resolution is a valid proof rule

p ∨ A ¬p ∨ B
A ∨ B resolution

{p ∨ A,¬p ∨ B} |= A ∨ B
A valid inference rule:
any assignment making premises true also makes conclusion true

Proof by cases: for p = T , we must show B |= A ∨ B:
if B = T , then also A ∨ B = T (valid)

case p = F is symmetric, so the rule is valid

Corollary: if A ∨ B is a contradiction, so is (p ∨ A) ∧ (¬p ∨ B)
if resolution reaches contradiction, we started from a contradiction

