H250: Honors Colloquium — Introduction to Computation

Axiomatization of Logic. Truth and Proof. Resolution

Marius Minea
marius@cs.umass.edu

mailto:marius@cs.umass.edu

Motivation: Determining Truth

In C5250, we started with truth table proofs.

Propositional formula: can always do truth table (even if large)

Predicate formula: can't do truth tables (infinite possibilities)
= must use other proof rules

Motivation: Determining Truth

In C5250, we started with truth table proofs.

Propositional formula: can always do truth table (even if large)
Predicate formula: can't do truth tables (infinite possibilities)
= must use other proof rules

How many do we need? (best: few)
Are they enough?
Can we prove everything?

Axiomatization helps answer these questions

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

Symbols of propositional logic:
propositions: p, q, r (usually lowercase letters)
operators (logical connectives): negation —, implication —
parentheses ()

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

Symbols of propositional logic:
propositions: p, q, r (usually lowercase letters)

operators (logical connectives): negation —, implication —
parentheses ()

Formulas of propositional logic: defined by structural induction
(how to build complex formulas from simpler ones)

A formula (compound proposition) is:
any proposition (aka atomic formula or variable)
(—a) where « is a formula
(e — B) if a and (8 are formulas

First, Define Syntax

We define a language by its symbols
and the rules to correctly combine symbols (the syntax)

Symbols of propositional logic:
propositions: p, q, r (usually lowercase letters)
operators (logical connectives): negation —, implication —
parentheses ()

Formulas of propositional logic: defined by structural induction
(how to build complex formulas from simpler ones)

A formula (compound proposition) is:
any proposition (aka atomic formula or variable)
(—a) where « is a formula
(e — B) if a and (8 are formulas

Implication and negation suffice!

Definitions Should Be Minimal

Fewest cases = simplicity
(all future reasoning must cover all cases)

Can define all other connectives in terms of — and —:
anBE ~(a——-B) (AND)
aVBE —a -8 (OR)

aepY (a = BN (B = a) (equivalence)

What is a Proof? (First Try)

Let H be a set of formulas (hypotheses, premises).
A deduction (or proof) from H is a sequence of formulas
(statements) Si,..., Sy, such that every formula Sy is

> apremise : S € H
» or follows from previous statements by a inference rule

What is a Proof? (First Try)

Let H be a set of formulas (hypotheses, premises).
A deduction (or proof) from H is a sequence of formulas
(statements) Si,..., Sy, such that every formula Sy is

> apremise : S € H
» or follows from previous statements by a inference rule
Which inference rules to use? (again, few is good!)

A A—B

5 modus ponens

(from A and A — B we derive/infer B

What is a Proof? (First Try)

Let H be a set of formulas (hypotheses, premises).
A deduction (or proof) from H is a sequence of formulas
(statements) Si,..., Sy, such that every formula Sy is

> apremise : S € H
» or follows from previous statements by a inference rule
Which inference rules to use? (again, few is good!)

A A—B
B

(from A and A — B we derive/infer B

modus ponens

Modus Ponens is enough for propositional (and predicate) logic

Proof Axioms

What about statements that need no premises at all ?
Need a base case for our reasoning: axioms
Actual definition: A deduction (or proof) from H is a sequence of
formulas S1,...,S,, such that every formula S is

> an axiom

> apremise : S € H

» or follows from previous statements by a deduction rule
Notation: HF S, (S, can be derived from H)

Axioms of propositional logic:
Al: a— (f— «)
A2 (a— (B —7)) = ((a—=pB)—=(a—=7))
A3: (= = —a) = (a— B)
«, B, are any formulas

A Sample Deduction

We prove A — A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A= (A= A) = A)) Al, a=ApB=A—=A

A Sample Deduction

We prove A — A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A= (A= A) = A)) Al, a=ApB=A—=A
()A= (A=A —-A) (A= (A= A) = (A= A)
A2, a=v=AF=A—=A

A Sample Deduction

We prove A — A for any formula A

(this is an axiom in some systems, but we can do without it)

(1) A= (A= A) = A)) Al, a=ApB=A—=A
(2Q)A= (A=A = A) = (A= (A= A) = (A= A)

A2, a=v=AF=A—=A
3) (A= (A= A) — (A=A MP(1,2)

A Sample Deduction

We prove A — A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A= (A= A) = A)) Al, a=ApB=A—=A
()A= (A=A —-A) (A= (A= A) = (A= A)

A2, a=v=AF=A—=A
B)A—=(A—=A) = (A=A MP(1,2)
(4) A= (A= A) Al a=p=A

A Sample Deduction

We prove A — A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A= (A= A) = A)) Al, a=ApB=A—=A
()A= (A=A —-A) (A= (A= A) = (A= A)

A2, a=v=AF=A—=A
B)A—=(A—=A) = (A=A MP(1,2)
(4) A= (A= A) Al a=p=A
(5)A— A MP(3,4)

A Sample Deduction

We prove A — A for any formula A
(this is an axiom in some systems, but we can do without it)
(1) A= (A= A) = A)) Al, a=ApB=A—=A
()A= (A=A —-A) (A= (A= A) = (A= A)
A2, a=v=AF=A—=A

(3) (A= (A— A)) = (A= A) MP(1,2)
(4) A= (A= A) Al,a=B=A
(5) A — A MP(3,4)

We can also show the Deduction Theorem
If HU{A}+ Bthen H- A— B
(assuming premise and proving conclusion shows implication)

Proofs are purely syntactic!

We have done this without defining truth values, truth tables, etc.
Finding a proof may be difficult (creativity, heuristics/tactics, etc.)

Checking a proof is mechanical, based on simple string operations
(check that formulas “pattern match” structure of axioms/rules)

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:
v(p) defined for any atomic proposition p

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:
v(p) defined for any atomic proposition p

) T ifv(e)=F
v(me) = { F oifvie)=T

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:

v(p) defined for any atomic proposition p
) T ifv(e)=F
v(ma) = { Foifvi@=T
_J F ifv(e)=Tand v(B)=F
V(o= f) = { T otherwise

Semantics of Logic

Truth assignment (valuation): gives a value (T, F) to any formula:
v(p) defined for any atomic proposition p

) T ifv(e)=F
v(ma) = { Foifvi@=T
_J F ifv(e)=Tand v(B)=F
V(o= 6) = { T otherwise
An interpretation is a truth assignment for the propositions of a

formula.

Truth and Semantic Consequence

An interpretation is a truth assignment for the propositions of a
formula.

A formula may be true or false in an interpretation.
An interpretation satisfies the formula or not.
A formula true in all interpretations is valid (a tautology).

How do we relate the truth values of different formulas?

Truth and Semantic Consequence

An interpretation is a truth assignment for the propositions of a
formula.

A formula may be true or false in an interpretation.
An interpretation satisfies the formula or not.
A formula true in all interpretations is valid (a tautology).

How do we relate the truth values of different formulas?

A set of formulas H = {Hi, ..., Hn} entails (semantically implies)
a formula C if any interpretation that satisfies H satisfies C.
We say C is a semantic consequence (entailed by) H.

Notation: H = C

This corresponds to our truth table proofs.

Soundness and Completess

H + C: deduction (purely syntactic, using inference rules)
H = C: entailment (semantic, using truth values)
Ideally, we'd like these notions to match.

Soundness and Completess

H + C: deduction (purely syntactic, using inference rules)
H = C: entailment (semantic, using truth values)
Ideally, we'd like these notions to match.

Soundness: If HE C, then H |= C: every theorem is valid.
(Everything that we prove is true. Our logic is sound, not
contradictory).

Soundness and Completess

H + C: deduction (purely syntactic, using inference rules)
H = C: entailment (semantic, using truth values)
Ideally, we'd like these notions to match.

Soundness: If HE C, then H |= C: every theorem is valid.
(Everything that we prove is true. Our logic is sound, not
contradictory).

Completeness: If H |= C, then H I C: everything true is provable

Propositional logic is both sound and complete.

Predicate (First Order) Logic: Syntax

Terms:
variable v

f(ty, -+, tn) f is an n-ary function, ti,--- , t, are terms
Example: parent(x), gcd(x,y), max(min(x,y),Zz)

constant c: special case, zero-argument function

Predicate (First Order) Logic: Syntax

Terms:
variable v

f(ty, -+, tn) f is an n-ary function, ti,--- , t, are terms
Example: parent(x), ged(x,y), max(min(x,y),z)

constant c: special case, zero-argument function
Formulas (well-formed formulas):

P(ty, -+, tn) P is an n-ary predicate, t1,--- , t, terms
Example: contains(empty, x), divide(gecd(x,y),x))
proposition p: special case, zero-argument predicate

- « is a formula

a—f a, 8 formulas

Predicate (First Order) Logic: Syntax

Terms:
variable v

f(ty, -+, tn) f is an n-ary function, ti,--- , t, are terms
Example: parent(x), ged(x,y), max(min(x,y),z)

constant ¢c: special case, zero-argument function
Formulas (well-formed formulas):
P(ty, -+, tn) P is an n-ary predicate, t1,--- , t, terms

Example: contains(empty, x), divide(gecd(x,y),x))
proposition p: special case, zero-argument predicate

e} « is a formula
a—f a, 8 formulas
Yva v variable, o formula: universal quantification

Example: Vx —contains(empty, x), VxVy divide(ged(x,y), x)

Proofs in Predicate Logic

Definition of deduction or proof is the same.

Need new axioms related to predicates and quantifiers

Al: a — (8 — «) (A1-A3 from propositional logic)
A2 (a = (B —=7)) = ((a = B) = (e —=17))

A3: (=8 — —a) = (a — p)

Proofs in Predicate Logic

Definition of deduction or proof is the same.

Need new axioms related to predicates and quantifiers

Al:
A2:
A3:
A4
Ab:
Ab:

a—(f—a) (A1-A3 from propositional logic)
(a = (8 =) = ((a = B) = (a = 7))

(=8 = —~a) = (a = f)

Vx(a — B) = (Vxa — Vxp)

Vxa — afx < t] if x can be substituted with t in «

a — Vxa if x is not free in «

Structures

A structure (interpretation) / consists of:
a nonempty set U called universe or domain of |

Structures

A structure (interpretation) | consists of:
a nonempty set U called universe or domain of |
(the set of values that the variables can take)

Structures

A structure (interpretation) | consists of:
a nonempty set U called universe or domain of |
(the set of values that the variables can take)
a value ¢; € U for every constant symbol c,

Structures

A structure (interpretation) | consists of:
a nonempty set U called universe or domain of |
(the set of values that the variables can take)
a value ¢; € U for every constant symbol c,
a function f; : U" — U for every n-ary function symbol f,

Structures

A structure (interpretation) | consists of:
a nonempty set U called universe or domain of |
(the set of values that the variables can take)
a value ¢; € U for every constant symbol c,
a function f; : U" — U for every n-ary function symbol f,
a relation Py C U" for every n-ary predicate symbol P

Structures

A structure (interpretation) | consists of:
a nonempty set U called universe or domain of |
(the set of values that the variables can take)
a value ¢; € U for every constant symbol c,
a function f; : U" — U for every n-ary function symbol f,
a relation Py C U" for every n-ary predicate symbol P

An interpretation does not assign values to variables.

Structures

A structure (interpretation) | consists of:
a nonempty set U called universe or domain of |
(the set of values that the variables can take)
a value ¢; € U for every constant symbol c,
a function f; : U" — U for every n-ary function symbol f,
a relation Py C U" for every n-ary predicate symbol P

An interpretation does not assign values to variables.

An assignment is a function s : V — U that assigns to every
variable a value from the universe.

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations
Vxg is true iff ¢ true when substituting x with any value d € U.

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations
Vxg is true iff ¢ true when substituting x with any value d € U.

A model for a formula ¢ is a structure for which the formula is
true for any variable assignment.
Notation: | = ¢

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations
Vxg is true iff ¢ true when substituting x with any value d € U.

A model for a formula ¢ is a structure for which the formula is
true for any variable assignment.
Notation: | = ¢

A tautology is a formula that is true in any interpretation.

Truth, Models and Tautologies

Given a structure and an assignment, we can evaluate any formula.
we know constants, functions, variable values, predicate relations
Vxg is true iff ¢ true when substituting x with any value d € U.

A model for a formula ¢ is a structure for which the formula is
true for any variable assignment.
Notation: | = ¢

A tautology is a formula that is true in any interpretation.

The number of interpretations (and assignment) is infinite!
= can't check truth exhaustively = deductive proofs essential

Soundness and Completess

Let H be a set of premises, and / an interpretation.
We say | = H if | is a model for every formula in H.

We say H |= C (read: H (semantically) implies C) if for every
interpretation /

I'= H implies | = C
(C is true in all interpretations that satisfy all premises in H).

Soundness and Completess

Let H be a set of premises, and / an interpretation.
We say | = H if | is a model for every formula in H.
We say H |= C (read: H (semantically) implies C) if for every

interpretation /

I'= H implies | = C
(C is true in all interpretations that satisfy all premises in H).
Soundness: If HE C, then H |= C: every theorem is valid.

Completeness: If H |= C, then H I C: everything true is provable

Predicate logic is both sound and complete.

Soundness and Completess

Let H be a set of premises, and / an interpretation.
We say | = H if | is a model for every formula in H.

We say H |= C (read: H (semantically) implies C) if for every
interpretation /

I'= H implies | = C
(C is true in all interpretations that satisfy all premises in H).

Soundness: If HE C, then H |= C: every theorem is valid.
Completeness: If H |= C, then H I C: everything true is provable

Predicate logic is both sound and complete.

Important. Completeness says we can prove something that's true.
We may not be able to disprove something false
(thus decide if something unknown is true or false).

Proof by Resolution

A formula is valid iff its negation is a contradiction.

We can prove a theorem by contradiction showing that its negation
is unsatisfiable

Proof by Resolution

A formula is valid iff its negation is a contradiction.

We can prove a theorem by contradiction showing that its negation
is unsatisfiable

Consider hypotheses A1, Ay, ..., Ap, conclusion C and the theorem
AINA...NA,— C
i.e., together, premises A;, Ay, ... A, imply conclusion C

Proof by Resolution

A formula is valid iff its negation is a contradiction.
We can prove a theorem by contradiction showing that its negation

is unsatisfiable

Consider hypotheses A1, Ay, ..., Ap, conclusion C and the theorem
AINA...NA,— C

i.e., together, premises A;, Ay, ... A, imply conclusion C

Negation of implication: =(H — C) = ~(-HV C) =HA-C

Soweshow AjAAy...ANA,AN—C s a contradiction
We can systematically do this by the resolution method.

Resolution in propositional logic

Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and —p).

pVA

-pVB

AV B resolution

“From clauses p V A and —p V B we derive clause AV B”

Recall: clause = disjunction \/ of literals (propositions or negations)

Resolution in propositional logic

Resolution is an inference rule that produces a new clause

from two clauses with complementary literals (p and —p).

pVA -pV B
AV B

“From clauses p V A and —p V B we derive clause AV B”

resolution

Recall: clause = disjunction \/ of literals (propositions or negations)

New clause = resolvent of the two clauses with respect to p
Example: res,(pV qV —r,mpVs)=qV-rVs

Resolution in propositional logic

Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and —p).

AV B resolution

“From clauses p V A and —p V B we derive clause AV B”

Recall: clause = disjunction \/ of literals (propositions or negations)

New clause = resolvent of the two clauses with respect to p
Example: res,(pV qV —r,mpVs)=qV-rVs

Modus ponens can be seen as a special case of resolution:
pV false -pVq

false V q
Likewise, hypothetical syllogism (rewrite implication using V)

Resolution is a valid proof rule

AV B

{pVA-pVB}=AVB
A valid inference rule:
any assignment making premises true also makes conclusion true

resolution

Resolution is a valid proof rule

AV B resolution

{pVA-pVB}=AVB
A valid inference rule:

any assignment making premises true also makes conclusion true
Proof by cases: for p = T, we must show B = AV B:

if B=T, then also AV B= T (valid)
case p = F is symmetric, so the rule is valid

Resolution is a valid proof rule

AV B resolution

{pVA-pVB}=AVB
A valid inference rule:
any assignment making premises true also makes conclusion true

Proof by cases: for p = T, we must show B = AV B:
if B=T, then also AV B= T (valid)
case p = F is symmetric, so the rule is valid

Corollary: if AV B is a contradiction, so is (pV A) A (—p V B)
if resolution reaches contradiction, we started from a contradiction

