
H250: Honors Colloquium – Introduction to Computation

Satisfiability Checking

Marius Minea
marius@cs.umass.edu

mailto:marius@cs.umass.edu


Review: Satisfiable formulas

A formula is satisfiable
if at least one truth assignment for its variables makes it true.

i.e., there is an interpretation that satisfies it

there is a line in the truth table with result true

Is the following formula satisfiable?

(¬p ∧ ¬q) ∧ (¬r ∨ ¬(p ∨ ¬(¬r → q)))

Maybe not at first sight, but can do it systematically



Option 1: try all cases

Formula: (¬p ∧ ¬q) ∧ (¬r ∨ ¬(p ∨ ¬(¬r → q)))

p = T, q = T, r = T: (F ∧ F) ∧ (F ∨ ¬(T ∨ ¬(F→ T )))
is false

p = T, q = T, r = F: (F ∧ F) ∧ (T ∨ ¬(T ∨ ¬(T→ T )))
is false

...
in effect, build truth table until

a true value is found
or we exhaust all options



Option 2: case split and simplify

Formula: f = (¬p ∧ ¬q) ∧ (¬r ∨ ¬(p ∨ ¬(¬r → q)))

Let’s try p = T.
f |p=T = (F ∧ ¬q) ∧ (¬r ∨ ¬(T ∨ ¬(¬r → q)))

= F ∧ (¬r ∨ ¬(T ∨ ¬(¬r → q)))
= F

not successful, but saves us from trying all subcases for q and r

We try p = F.
f |p=F = (T ∧ ¬q) ∧ (¬r ∨ ¬(F ∨ ¬(¬r → q)))

= ¬q ∧ (¬r ∨ ¬¬(¬r → q))
= ¬q ∧ (¬r ∨ r ∨ q)
= ¬q

and the formula is true for p = q = F, thus satisfiable

better option, but can still make poor choices, redo computations



Option 2: case split and simplify

Formula: f = (¬p ∧ ¬q) ∧ (¬r ∨ ¬(p ∨ ¬(¬r → q)))

Let’s try p = T.
f |p=T = (F ∧ ¬q) ∧ (¬r ∨ ¬(T ∨ ¬(¬r → q)))

= F ∧ (¬r ∨ ¬(T ∨ ¬(¬r → q)))
= F

not successful, but saves us from trying all subcases for q and r
We try p = F.
f |p=F = (T ∧ ¬q) ∧ (¬r ∨ ¬(F ∨ ¬(¬r → q)))

= ¬q ∧ (¬r ∨ ¬¬(¬r → q))
= ¬q ∧ (¬r ∨ r ∨ q)
= ¬q

and the formula is true for p = q = F, thus satisfiable

better option, but can still make poor choices, redo computations



Why is SAT checking relevant?
Theory: first problem shown to be NP-complete

Logic design and circuit verification:
functions for original and optimized circuit
equivalence means ¬(forig ↔ fopt) NOT satisfiable

Program analysis and verification
can we traverse successive if statements on a certain path?

Constraint satisfaction:
Scheduling

all classes scheduled, no two conflicting, at most 8 hours/day
Planning

actions occur in certain order, one outcome conditions another

Bioinformatics: making inferences from genotype data

also familar puzzles: n-queens, Sudoku, etc.



A motivating puzzle
Can you find a sequence of 8 bits b1, b2, ..., b8 that has

no three equally-spaced 0s
no three equally-spaced 1s

if interested: van der Waerden numbers

For instance, 00101101 is not good: has 0 at positions 1, 4, and 7

positions 1, 2, 3 cannot be all zeroes, nor all ones
(b1 ∨ b2 ∨ b3) ∧ (¬b1 ∨ ¬b2 ∨ ¬b3)

same for positions (2, 3, 4), ..., (6, 7, 8) (spacing 1)
also for positions (1, 3, 5), ..., (4, 6, 8) (spacing 2)
and for (1, 4, 7) and (2, 5, 8) (spacing 3)

. . . ∧ (b1 ∨ b4 ∨ b7) ∧ (¬b1 ∨ ¬b4 ∨ ¬b7)
∧ (b2 ∨ b5 ∨ b8) ∧ (¬b2 ∨ ¬b5 ∨ ¬b8)

We have a formula structured as a conjunction of constraints
common in constraint satisfaction problems



Review: Conjunctive Normal Form

A formula is in conjunctive normal form, if it is
a conjunction ∧ of clauses, where
a clause is a disjunction ∨ of literals, and
a literal is a propositional variable p or its negation ¬p

In other words, the formula is structured as an AND of ORs

(a ∨ ¬b ∨ ¬d)
∧ (¬a ∨ ¬b)
∧ (¬a ∨ c ∨ ¬d)
∧ (¬a ∨ b ∨ c)

Can you see a way to make the formula true?



Advantages of CNF

(a ∨ ¬b ∨ ¬d)
∧ (¬a ∨ ¬b)
∧ (¬a ∨ c ∨ ¬d)
∧ (¬a ∨ b ∨ c)

Having a formula in a regular form is of advantage:

ease of representation: list of lists of literals

ease of processing: few cases to handle

Constraint compositions are often close to conjunctive normal form
we’ve seen how to transform a formula to CNF
and avoid exponential blowup (Tseitin transform)

Let’s find some rules that make checking satisfiability easier,
allowing us to simplify the problem.



Rules for satisfiability: Unit clause

RUNIT: A single literal (unit clause) must be assigned true.
(one-literal rule)

in
a

∧ (¬a ∨ b ∨ c)
∧ (¬a ∨ ¬b ∨ ¬c)

a must be taken T

in
(a ∨ b)

∧ ¬b
∧ (¬a ∨ ¬b ∨ c)

b must be taken F

otherwise the formula is false

If we find any unit clauses, the values imposed for those literals
allow us to simplify the formula further.



Rules for satisfiability: Unit clause

RUNIT: A single literal (unit clause) must be assigned true.
(one-literal rule)

in
a

∧ (¬a ∨ b ∨ c)
∧ (¬a ∨ ¬b ∨ ¬c)

a must be taken T

in
(a ∨ b)

∧ ¬b
∧ (¬a ∨ ¬b ∨ c)

b must be taken F

otherwise the formula is false

If we find any unit clauses, the values imposed for those literals
allow us to simplify the formula further.



Rules for satisfiability: Boolean constraint propagation

RBCP1: If a literal L is T, delete clauses containing L
they are true (as desired), no need to consider further

RBCP2: If a literal L is F, delete it from all clauses
false can’t help make clause true

Previous examples simplify:
a

∧ (¬a/// ∨ b ∨ c)
∧ (¬a/// ∨ ¬b ∨ ¬c)

a=T→ (b ∨ c)
∧ (¬b ∨ ¬c)

(a ∨ b/)
∧ ¬b
∧ (¬a ∨ ¬b ∨ c)X

b=F→ a

and from here a = T , formula is satisfiable



Rules for satisfiability: Stopping
RSTOP: If there are no more clauses, formula is satisfiable

with the truth assignment obtained so far

If we have an empty clause, formula is not satisfiable
no literals in empty clause to make it true

(a ∨ b)X
∧ aX
∧ (a ∨ ¬b ∨ c)X

a=T→ SAT

bX
∧ (¬b/// ∨ c)
∧ (¬b/// ∨ ¬c)

b=T→
cX

∧ ¬c///
c=T→ ∅ UNSAT

c = T makes ¬c empty clause ⇒ not satisfiable

Both stopping conditions have empty as list base case:
empty clause list means SAT: all clauses accounted for X
empty clause means UNSAT: no literals to make it true



Rules for satisfiability: Stopping
RSTOP: If there are no more clauses, formula is satisfiable

with the truth assignment obtained so far

If we have an empty clause, formula is not satisfiable
no literals in empty clause to make it true

(a ∨ b)X
∧ aX
∧ (a ∨ ¬b ∨ c)X

a=T→ SAT

bX
∧ (¬b/// ∨ c)
∧ (¬b/// ∨ ¬c)

b=T→
cX

∧ ¬c///
c=T→ ∅ UNSAT

c = T makes ¬c empty clause ⇒ not satisfiable

Both stopping conditions have empty as list base case:
empty clause list means SAT: all clauses accounted for X
empty clause means UNSAT: no literals to make it true



Rules for satisfiability: Case splitting

What if no more simplifications can be done?
a ∧ (¬a ∨ b ∨ c) ∧ (¬b ∨ ¬c) a=T→ (b ∨ c) ∧ (¬b ∨ ¬c) ??

RCASE: Choose a proposition and split by cases (try both options):
I with value F
I with value T

Any solution is fine

If none of the two cases has solution, formula is unsatisfiable



A solution algorithm

We are given
I a list of clauses (the formula)
I the set of already assigned literals (initially empty)

Rules RUNIT and RBCP reduce the problem to a simpler one
(fewer propositions or fewer/simpler clauses)
Rule RSTOP tells us we are done (have an answer)
Rule RCASE reduces the problem to two simpler problems
(one less propositional variable)

Reducing the problem to one or more simpler instances of itself
⇒ we have a recursive solution (with stopping condition RSTOP)



Writing a pseudocode algorithm

We’ll either return the set of literals assigned T (can use to check)
or raise an exception Unsat

function solve(clauses: clause list, truelit: lit set)
while clauses contains a unit clause do

(clauses, truelit) = simplify(clauses, truelit) (* RUNIT, RBCP*)

if clauses = empty list then
return truelit (* RSTOP: SAT, return set of true literals *)

if clauses contains empty clause then
raise Unsat (* RSTOP: UNSAT *)

choose a literal p
try solve (clauses, truelit ∪ {¬p}) (* RCASE: try p=F *)
with Unsat → solve (clauses, truelit ∪{p}) (* try p=T *)

Davis-Putnam-Logemann-Loveland algorithm (1962)
simplified, no check for pure literals (just positive/just negated)



Writing a pseudocode algorithm

We’ll either return the set of literals assigned T (can use to check)
or raise an exception Unsat

function solve(clauses: clause list, truelit: lit set)
while clauses contains a unit clause do

(clauses, truelit) = simplify(clauses, truelit) (* RUNIT, RBCP*)
if clauses = empty list then

return truelit (* RSTOP: SAT, return set of true literals *)

if clauses contains empty clause then
raise Unsat (* RSTOP: UNSAT *)

choose a literal p
try solve (clauses, truelit ∪ {¬p}) (* RCASE: try p=F *)
with Unsat → solve (clauses, truelit ∪{p}) (* try p=T *)

Davis-Putnam-Logemann-Loveland algorithm (1962)
simplified, no check for pure literals (just positive/just negated)



Writing a pseudocode algorithm

We’ll either return the set of literals assigned T (can use to check)
or raise an exception Unsat

function solve(clauses: clause list, truelit: lit set)
while clauses contains a unit clause do

(clauses, truelit) = simplify(clauses, truelit) (* RUNIT, RBCP*)
if clauses = empty list then

return truelit (* RSTOP: SAT, return set of true literals *)
if clauses contains empty clause then

raise Unsat (* RSTOP: UNSAT *)

choose a literal p
try solve (clauses, truelit ∪ {¬p}) (* RCASE: try p=F *)
with Unsat → solve (clauses, truelit ∪{p}) (* try p=T *)

Davis-Putnam-Logemann-Loveland algorithm (1962)
simplified, no check for pure literals (just positive/just negated)



Writing a pseudocode algorithm

We’ll either return the set of literals assigned T (can use to check)
or raise an exception Unsat

function solve(clauses: clause list, truelit: lit set)
while clauses contains a unit clause do

(clauses, truelit) = simplify(clauses, truelit) (* RUNIT, RBCP*)
if clauses = empty list then

return truelit (* RSTOP: SAT, return set of true literals *)
if clauses contains empty clause then

raise Unsat (* RSTOP: UNSAT *)
choose a literal p
try solve (clauses, truelit ∪ {¬p}) (* RCASE: try p=F *)
with Unsat → solve (clauses, truelit ∪{p}) (* try p=T *)

Davis-Putnam-Logemann-Loveland algorithm (1962)
simplified, no check for pure literals (just positive/just negated)



Applying Boolean Constraint Propagation

True literals:

V

¬x1 ∨ x2

V

x3 ∨ x4 ∨ x5

V

x1
x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

∅

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1

Traverse list of clauses, accumulate a new list of filtered clauses,
and a set of literals found true from unit clauses

No true literals yet, can’t simplify, just copy
First unit clause found.
Restart simplification of new clause list with x1 set to T



Applying Boolean Constraint Propagation

True literals:

V ¬x1 ∨ x2

V

x3 ∨ x4 ∨ x5

V

x1
x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

∅

¬x1 ∨ x2

x3 ∨ x4 ∨ x5
x1

Traverse list of clauses, accumulate a new list of filtered clauses,
and a set of literals found true from unit clauses

No true literals yet, can’t simplify, just copy

First unit clause found.
Restart simplification of new clause list with x1 set to T



Applying Boolean Constraint Propagation

True literals:

V

¬x1 ∨ x2
V x3 ∨ x4 ∨ x5

V

x1
x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

∅

¬x1 ∨ x2
x3 ∨ x4 ∨ x5

x1

Traverse list of clauses, accumulate a new list of filtered clauses,
and a set of literals found true from unit clauses

No true literals yet, can’t simplify, just copy

First unit clause found.
Restart simplification of new clause list with x1 set to T



Applying Boolean Constraint Propagation

True literals:

V

¬x1 ∨ x2

V

x3 ∨ x4 ∨ x5
V x1

x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

∅

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1

Traverse list of clauses, accumulate a new list of filtered clauses,
and a set of literals found true from unit clauses
No true literals yet, can’t simplify, just copy

First unit clause found.
Restart simplification of new clause list with x1 set to T



Applying BCP: Eagerly re-simplify with unit clause

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1
x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

∅

V

¬x1 ∨ x2
x3 ∨ x4 ∨ x5

{1}

x2

Simplify clauses accumulated so far with x1 set to T

¬x1 is filtered from first clause
New unit clause x2 is found



Applying BCP: Eagerly re-simplify with unit clause

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1
x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

∅

V ¬x1 ∨ x2
x3 ∨ x4 ∨ x5

{1}

x2

Simplify clauses accumulated so far with x1 set to T

¬x1 is filtered from first clause
New unit clause x2 is found



Applying BCP: continue with two true literals

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1
x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

∅

V x3 ∨ x4 ∨ x5

{1, 2}

x3 ∨ x4 ∨ x5

Done at this level, next clause not changed



Applying BCP: return to first-level traversal

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1

V x1 ∨ x7 X

V

¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

{1, 2}

x3 ∨ x4 ∨ x5

¬x4

Clause is true, ignored

New unit clause ¬x4 found



Applying BCP: return to first-level traversal

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1

V

x1 ∨ x7 X
V ¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

{1, 2}

x3 ∨ x4 ∨ x5
¬x4

Clause is true, ignored

New unit clause ¬x4 found



Applying BCP: restart simplification

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1
x1 ∨ x7
¬x1 ∨ ¬x4
¬x3 ∨ x5
¬x5 ∨ x6

{1, 2}

V x3 ∨ x4 ∨ x5

{1, 2,−4}

x3 ∨ x5

Only clause in list simplifies to x3 ∨ x5



Applying BCP: continue at first level

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1
x1 ∨ x7
¬x1 ∨ ¬x4

V ¬x3 ∨ x5

V

¬x5 ∨ x6

{1, 2,−4}

x3 ∨ x5
¬x3 ∨ x5

¬x5 ∨ x6

Last two clauses copied unchanged.

Three literals have been assigned true.
Formula has been simplified to three clauses.



Applying BCP: continue at first level

True literals:

¬x1 ∨ x2
x3 ∨ x4 ∨ x5
x1
x1 ∨ x7
¬x1 ∨ ¬x4

V

¬x3 ∨ x5
V ¬x5 ∨ x6

{1, 2,−4}

x3 ∨ x5
¬x3 ∨ x5
¬x5 ∨ x6

Last two clauses copied unchanged.

Three literals have been assigned true.
Formula has been simplified to three clauses.



Example: our 8-bit puzzle

Find a sequence of 8 bits b1, b2, ..., b8 that has
no three equally-spaced 0s
no three equally-spaced 1s

All clauses are triples (minus denotes negated literal)
[[1; 2; 3]; [-1; -2; -3]; [2; 3; 4]; [-2; -3; -4];
[3; 4; 5]; [-3; -4; -5]; [4; 5; 6]; [-4; -5; -6];
[5; 6; 7]; [-5; -6; -7]; [6; 7; 8]; [-6; -7; -8];
[1; 3; 5]; [-1; -3; -5]; [2; 4; 6]; [-2; -4; -6];
[3; 5; 7]; [-3; -5; -7]; [4; 6; 8]; [-4; -6; -8];
[1; 4; 7]; [-1; -4; -7]; [2; 5; 8]; [-2; -5; -8]]

solution: [-8; -7; -4; -3; 1; 2; 5; 6]

One solution: 11001100

How could we find another one?



Example: our 8-bit puzzle

Find a sequence of 8 bits b1, b2, ..., b8 that has
no three equally-spaced 0s
no three equally-spaced 1s

All clauses are triples (minus denotes negated literal)
[[1; 2; 3]; [-1; -2; -3]; [2; 3; 4]; [-2; -3; -4];
[3; 4; 5]; [-3; -4; -5]; [4; 5; 6]; [-4; -5; -6];
[5; 6; 7]; [-5; -6; -7]; [6; 7; 8]; [-6; -7; -8];
[1; 3; 5]; [-1; -3; -5]; [2; 4; 6]; [-2; -4; -6];
[3; 5; 7]; [-3; -5; -7]; [4; 6; 8]; [-4; -6; -8];
[1; 4; 7]; [-1; -4; -7]; [2; 5; 8]; [-2; -5; -8]]

solution: [-8; -7; -4; -3; 1; 2; 5; 6]

One solution: 11001100

How could we find another one?



Complexity of SAT checking

A formula with n propositions has 2n truth assignments
⇒ exponential time trying all

But: a given truth assignment can be checked in polynomial time
(in formula size): traverse formula once and compute value

In general, checking a solution is (much) easier than finding it.

NP (nondeterministic polynomial time): class of problems for which
a solution (“guessed” or given) can be verified in polynomial time.

SAT-checking is the first problem proved NP-complete (Cook’71):
solving SAT-checking in polynomial time would imply P = NP

No such algorithm is known, but huge practical progress in solvers:
million variables, tens of millions of clauses
yearly tool competitions, strong industrial usage



Limitations of basic DPLL

I Naive decisions: literal on which to branch chosen arbitrarily

⇒ Heuristics for better choice
I Does not learn from conflicts: a bad partial assignment may

be retried multiple times (in different subtrees)
⇒ clause learning: learn new clauses (constraints) that need
to be satisfied
quad e.g., (A ∨ p) ∧ (B ∨ ¬p)→ (A ∨ B)

I Backtracks one level, but root of conflict may be higher up
⇒non-chronological backtracking: several levels up, avoids
pointless search

Conflict Driven Clause Learning: technique used in family of
modern solvers



Limitations of basic DPLL

I Naive decisions: literal on which to branch chosen arbitrarily
⇒ Heuristics for better choice

I Does not learn from conflicts: a bad partial assignment may
be retried multiple times (in different subtrees)
⇒ clause learning: learn new clauses (constraints) that need
to be satisfied
quad e.g., (A ∨ p) ∧ (B ∨ ¬p)→ (A ∨ B)

I Backtracks one level, but root of conflict may be higher up
⇒non-chronological backtracking: several levels up, avoids
pointless search

Conflict Driven Clause Learning: technique used in family of
modern solvers



Limitations of basic DPLL

I Naive decisions: literal on which to branch chosen arbitrarily
⇒ Heuristics for better choice

I Does not learn from conflicts: a bad partial assignment may
be retried multiple times (in different subtrees)

⇒ clause learning: learn new clauses (constraints) that need
to be satisfied
quad e.g., (A ∨ p) ∧ (B ∨ ¬p)→ (A ∨ B)

I Backtracks one level, but root of conflict may be higher up
⇒non-chronological backtracking: several levels up, avoids
pointless search

Conflict Driven Clause Learning: technique used in family of
modern solvers



Limitations of basic DPLL

I Naive decisions: literal on which to branch chosen arbitrarily
⇒ Heuristics for better choice

I Does not learn from conflicts: a bad partial assignment may
be retried multiple times (in different subtrees)
⇒ clause learning: learn new clauses (constraints) that need
to be satisfied
quad e.g., (A ∨ p) ∧ (B ∨ ¬p)→ (A ∨ B)

I Backtracks one level, but root of conflict may be higher up
⇒non-chronological backtracking: several levels up, avoids
pointless search

Conflict Driven Clause Learning: technique used in family of
modern solvers



Limitations of basic DPLL

I Naive decisions: literal on which to branch chosen arbitrarily
⇒ Heuristics for better choice

I Does not learn from conflicts: a bad partial assignment may
be retried multiple times (in different subtrees)
⇒ clause learning: learn new clauses (constraints) that need
to be satisfied
quad e.g., (A ∨ p) ∧ (B ∨ ¬p)→ (A ∨ B)

I Backtracks one level, but root of conflict may be higher up

⇒non-chronological backtracking: several levels up, avoids
pointless search

Conflict Driven Clause Learning: technique used in family of
modern solvers



Limitations of basic DPLL

I Naive decisions: literal on which to branch chosen arbitrarily
⇒ Heuristics for better choice

I Does not learn from conflicts: a bad partial assignment may
be retried multiple times (in different subtrees)
⇒ clause learning: learn new clauses (constraints) that need
to be satisfied
quad e.g., (A ∨ p) ∧ (B ∨ ¬p)→ (A ∨ B)

I Backtracks one level, but root of conflict may be higher up
⇒non-chronological backtracking: several levels up, avoids
pointless search

Conflict Driven Clause Learning: technique used in family of
modern solvers



Limitations of basic DPLL

I Naive decisions: literal on which to branch chosen arbitrarily
⇒ Heuristics for better choice

I Does not learn from conflicts: a bad partial assignment may
be retried multiple times (in different subtrees)
⇒ clause learning: learn new clauses (constraints) that need
to be satisfied
quad e.g., (A ∨ p) ∧ (B ∨ ¬p)→ (A ∨ B)

I Backtracks one level, but root of conflict may be higher up
⇒non-chronological backtracking: several levels up, avoids
pointless search

Conflict Driven Clause Learning: technique used in family of
modern solvers



Rephrasing the Algorithm

Main actions:
I Decide (assign a variable)
I BCP (Boolean Constraint Propagation)
I AnalyzeConflict: determine backtracking
dlevel = 0
while NotYetSatisfied do

Decide(); ++dlevel;
if BCP() == conflict then

dlevel = AnalyzeConflict()
if dlevel < 0 then

return UNSAT
return sat-assignment



Techniques in modern solvers

I Decision level for each variable assignment
if assigned through BCP, same decision level
Example: (¬a ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (¬c ∨ d) ∧ (¬b ∨ ¬d)
a = 1 implies c = 1 (through c1) and d = 1 (through c3):
same level
Next independent choice would be one level down

I Implication Graph: tracks assignments implied by BCP

I Learned Clauses: by analyzing implication graph



Techniques in modern solvers

I Decision level for each variable assignment
if assigned through BCP, same decision level
Example: (¬a ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (¬c ∨ d) ∧ (¬b ∨ ¬d)
a = 1 implies c = 1 (through c1) and d = 1 (through c3):
same level
Next independent choice would be one level down

I Implication Graph: tracks assignments implied by BCP

I Learned Clauses: by analyzing implication graph



Techniques in modern solvers

I Decision level for each variable assignment
if assigned through BCP, same decision level
Example: (¬a ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (¬c ∨ d) ∧ (¬b ∨ ¬d)
a = 1 implies c = 1 (through c1) and d = 1 (through c3):
same level
Next independent choice would be one level down

I Implication Graph: tracks assignments implied by BCP

I Learned Clauses: by analyzing implication graph



Watch Literals: Speeding up BCP

Assigning a literal ⇒ scanning for affected clauses (expensive)

Most useful if propagation yields new assignment (unit clause)

Idea: keep two watch literals per clause; link from literal to
watched clause(s)

For every clause where a watch literal becomes false:
if nothing is left ⇒ conflict
if one literal left (unit clause) ⇒ BCP
else pick a new watched literal !



Watch Literals: Speeding up BCP

Assigning a literal ⇒ scanning for affected clauses (expensive)

Most useful if propagation yields new assignment (unit clause)

Idea: keep two watch literals per clause; link from literal to
watched clause(s)

For every clause where a watch literal becomes false:
if nothing is left ⇒ conflict
if one literal left (unit clause) ⇒ BCP
else pick a new watched literal !



Watch Literals: Speeding up BCP

Assigning a literal ⇒ scanning for affected clauses (expensive)

Most useful if propagation yields new assignment (unit clause)

Idea: keep two watch literals per clause; link from literal to
watched clause(s)

For every clause where a watch literal becomes false:
if nothing is left ⇒ conflict
if one literal left (unit clause) ⇒ BCP
else pick a new watched literal !



Special case: 2-SAT

Two literals per clause:
(¬a ∨ ¬b) ∧ (b ∨ c) ∨ (¬c ∨ a) ∧ (¬c ∨ e) ∧ (f ∨ g) ∧ (¬g ∨ h)

Is this simpler?

Yes, can do polynomial-time algorithm.

Repeat propagating one assignment until this stops.
Remaining part is independent ⇒ may need to retry, but not
backtrack

Or, graph with all literals x and ¬x as nodes,
Clause `1 ∨ `2 yields edges ¬`1 → `2 and ¬`2 → `1.
Check that no x and ¬x in same strongly connected component.



Special case: 2-SAT

Two literals per clause:
(¬a ∨ ¬b) ∧ (b ∨ c) ∨ (¬c ∨ a) ∧ (¬c ∨ e) ∧ (f ∨ g) ∧ (¬g ∨ h)

Is this simpler?

Yes, can do polynomial-time algorithm.

Repeat propagating one assignment until this stops.
Remaining part is independent ⇒ may need to retry, but not
backtrack

Or, graph with all literals x and ¬x as nodes,
Clause `1 ∨ `2 yields edges ¬`1 → `2 and ¬`2 → `1.
Check that no x and ¬x in same strongly connected component.



Key Takeaways

SAT checking is a problem with many practical applications

and theoretical importance (NP-completeness)

Basic algorithm relies on just a few simple rules
unit clause / one-literal rule
boolean constraint propagation
case splitting

Many optimizations in state-of-the-art solvers


