H250: Honors Colloquium – Introduction to Computation Conjunctive Normal Form. Tseitin Transform

Marius Minea marius@cs.umass.edu

Review: Propositional Formulas

Boolean operators: \neg, \land, \lor . We'll rewrite $\rightarrow, \leftrightarrow, \oplus$ in these terms.

Interesting Questions:

Are two formulas A and B equivalent? $A \leftrightarrow B$

Is a formula a *tautology* ? (true in all truth assignments)

Is a formula *satisfiable*? (in *at least one* truth assignment)

Is a formula a *contradiction*? (has *no* satisfying assignment)

Can we represent a propositional formula in a "systematic" way?

Can we represent propositional formulas uniquely ?

Ideally, a representation should be

simple and compact (easy to implement and store)
easy to process (simple, efficient algorithms)

canonical (a formula is represented in a single way)

two formulas are equal precisely if they have same representation

Conjunctive Normal Form

formula = $conjunction \land of clauses$ $clause = disjunction \lor of literals$ literal = proposition or its negation

$$(a \lor \neg b \lor \neg d) \\ \land (\neg a \lor \neg b) \\ \land (\neg a \lor c \lor \neg d) \\ \land (\neg a \lor b \lor c)$$

In other words: three levels of operators: AND \land : top level – links clauses OR \lor : middle – joins literals within clause NOT \neg : bottom – only applied to propositions

Natural representation because in practice, many formulas arise from multiple constraints that must hold *simultaneously* (AND).

Simple to process, but not *canonical* (one formula may still be written in many ways)

Useful Transformations (Review)

De Morgan's laws:
$$\neg(a \lor b) \leftrightarrow \neg a \land \neg b$$

 $\neg(a \land b) \leftrightarrow \neg a \lor \neg b$ Distributivity: $a \lor (b \land c) \leftrightarrow (a \lor b) \land (a \lor c)$
 $a \land (b \lor c) \leftrightarrow (a \land b) \lor (a \land c)$

Distributivity works both ways.

From algebra and circuit logic, we are used to sum of products (OR of ANDs). For CNF, we do the opposite!

Transforming to Conjunctive Normal Form

Think of formula as expression tree. Need to move operator nodes up/down in tree (bring \wedge to top level, \neg to bottom).

1. Push negation inward, until applied to atomic propositions (*de Morgan laws*)

$$\neg (A \lor B) = \neg A \land \neg B \qquad \neg (A \land B) = \neg A \lor \neg B$$

2. Push \lor inside \land (distribute \lor over \land) ($A \land B$) $\lor C = (A \lor C) \land (B \lor C)$

Example:

$$\neg((a \land b) \lor ((a \to (b \land c)) \to c))$$

$$= \neg(a \land b) \land \neg((a \to (b \land c)) \to c))$$

$$= (\neg a \lor \neg b) \land ((a \to (b \land c)) \land \neg c)$$

$$= (\neg a \lor \neg b) \land (\neg a \lor (b \land c)) \land \neg c$$

$$= (\neg a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor c) \land \neg c$$

Rather straightforward. Could there be problems?

Potential Problem: Size Blowup

Distributivity will duplicate entire subformulas

Can happen repeatedly: $(p_1 \land p_2 \land p_3) \lor (q_1 \land q_2 \land q_3) =$ $(p_1 \lor (q_1 \land q_2 \land q_3)) \land (p_2 \lor (q_1 \land q_2 \land q_3)) \land (p_3 \lor (q_1 \land q_2 \land q_3))$ $= (p_1 \lor q_1) \land (p_1 \lor q_2) \land (p_1 \lor q_3)$ $\land (p_2 \lor q_1) \land (p_2 \lor q_2) \land (p_2 \lor q_3)$ $\land (p_3 \lor q_1) \land (p_3 \lor q_2) \land (p_3 \lor q_3)$

Worst-case blowup? : exponential!

Can't use this transformation for subsequent algorithms (e.g., satisfiability checking) if resulting formula is inefficiently large (possibly too large to represent/process). Recall our practical requirements for a normal form.

Tseitin Transformation

Idea: rather than duplicate subformula: introduce *new proposition* to represent it add constraint: *equivalence* of subformula with new proposition write this equivalence in CNF

Tseitin Transformation: Example

Add numbered proposition for each operator: $(a \stackrel{1}{\wedge} \neg b) \lor \neg (c \stackrel{2}{\wedge} d)$ no need to number negations nor top-level operator $(...) \lor (...)$ New propositions: $p_1 \leftrightarrow a \stackrel{1}{\wedge} \neg b$, $p_2 \leftrightarrow c \stackrel{2}{\wedge} d$. Rewrite equivalences for new propositions in CNF, conjunct with top-level operator of formula: $(p_1 \vee \neg p_2)$ overall formula $\wedge (\neg a \lor b \lor p_1) \land (a \lor \neg p_1) \land (\neg b \lor \neg p_1)$ $p_1 \leftrightarrow a \wedge \neg b$

 $\wedge (\neg c \lor \neg d \lor p_2) \land (c \lor \neg p_2) \land (d \lor \neg p_2) \qquad p_2 \leftrightarrow c \land d$

Can directly transform multi-argument conjunctions/disjunctions AND $(\neg A_1 \lor \neg A_2 \lor \neg A_3 \lor p) \land (A_1 \lor \neg p) \land (A_2 \lor \neg p) \land (A_3 \lor \neg p)$ OR $(A_1 \lor A_2 \lor A_3 \lor \neg p) \land (\neg A_1 \lor p) \land (\neg A_2 \lor p) \land (\neg A_3 \lor p)$

Tseitin Transformation: Circuit View

$$(a \lor \neg b) \land \neg (c \lor d)$$

Each gate input: one new proposition
not needed for \lor as input to \land
not needed for top level \land

1

Example: a single new proposition $(a \lor \neg b) \land \neg p_1$ our formula $\land (p_1 \leftrightarrow c \lor d)$ meaning of p_1

Convert each equivalence to CNF (by the above rules) combine them with \wedge

$$\begin{array}{ll} (a \lor \neg b) \land p_1 & \text{top level (result)} \\ \land (c \lor d \lor \neg p_1) \land (\neg c \lor p_1) \land (\neg d \lor p_1) \end{array}$$

- A new formula with more propositions than the original one NOT an equivalent formula
- New formula is *satisfiable iff the original is satisfiable* we call it *equisatisfiable*)
- Size of resulting formula: *linear* in original size good for use in satisfiability checking