
H250: Honors Colloquium – Introduction to Computation

Conjunctive Normal Form. Tseitin Transform

Marius Minea
marius@cs.umass.edu

mailto:marius@cs.umass.edu


Review: Propositional Formulas

Boolean operators: ¬,∧,∨.
We’ll rewrite →,↔,⊕ in these terms.

Interesting Questions:

Are two formulas A and B equivalent? A↔ B

Is a formula a tautology ? (true in all truth assignments)

Is a formula satisfiable? (in at least one truth assignment)

Is a formula a contradiction? (has no satisfying assignment)



Representation Questions

Can we represent a propositional formula in a “systematic” way?

Can we represent propositional formulas uniquely ?

Ideally, a representation should be

simple and compact (easy to implement and store)

easy to process (simple, efficient algorithms)

canonical (a formula is represented in a single way)
two formulas are equal precisely if they have same representation



Conjunctive Normal Form

formula = conjunction ∧ of clauses
clause = disjunction ∨ of literals
literal = proposition or its negation

(a ∨ ¬b ∨ ¬d)
∧ (¬a ∨ ¬b)
∧ (¬a ∨ c ∨ ¬d)
∧ (¬a ∨ b ∨ c)

In other words: three levels of operators:
AND ∧: top level – links clauses
OR ∨: middle – joins literals within clause
NOT ¬: bottom – only applied to propositions

Natural representation because in practice, many formulas arise
from multiple constraints that must hold simultaneously (AND).

Simple to process, but not canonical
(one formula may still be written in many ways)



Useful Transformations (Review)

De Morgan’s laws: ¬(a ∨ b) ↔ ¬a ∧ ¬b
¬(a ∧ b) ↔ ¬a ∨ ¬b

Distributivity: a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c)
a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c)

Distributivity works both ways.
From algebra and circuit logic, we are used to sum of products
(OR of ANDs). For CNF, we do the opposite!



Transforming to Conjunctive Normal Form
Think of formula as expression tree. Need to move operator nodes
up/down in tree (bring ∧ to top level, ¬ to bottom).

1. Push negation inward, until applied to atomic propositions
(de Morgan laws)

¬(A ∨ B) = ¬A ∧ ¬B ¬(A ∧ B) = ¬A ∨ ¬B

2. Push ∨ inside ∧ (distribute ∨ over ∧)
(A ∧ B) ∨ C = (A ∨ C) ∧ (B ∨ C)

Example:
¬((a ∧ b) ∨ ((a→ (b ∧ c))→ c))

= ¬(a ∧ b) ∧ ¬((a→ (b ∧ c)) → c))
= (¬a ∨ ¬b) ∧ ((a → (b ∧ c)) ∧ ¬c)
= (¬a ∨ ¬b) ∧ (¬a ∨ (b ∧ c)) ∧ ¬c
= (¬a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ c) ∧ ¬c

Rather straightforward. Could there be problems?



Potential Problem: Size Blowup

Distributivity will duplicate entire subformulas

Can happen repeatedly: (p1 ∧ p2 ∧ p3) ∨ (q1 ∧ q2 ∧ q3) =
(p1 ∨ (q1 ∧ q2 ∧ q3)) ∧ (p2 ∨ (q1 ∧ q2 ∧ q3)) ∧ (p3 ∨ (q1 ∧ q2 ∧ q3))
= (p1 ∨ q1) ∧ (p1 ∨ q2) ∧ (p1 ∨ q3)
∧ (p2 ∨ q1) ∧ (p2 ∨ q2) ∧ (p2 ∨ q3)
∧ (p3 ∨ q1) ∧ (p3 ∨ q2) ∧ (p3 ∨ q3)

Worst-case blowup? : exponential!

Can’t use this transformation for subsequent algorithms (e.g.,
satisfiability checking) if resulting formula is inefficiently large
(possibly too large to represent/process).
Recall our practical requirements for a normal form.



Tseitin Transformation

Idea: rather than duplicate subformula:
introduce new proposition to represent it
add constraint: equivalence of subformula with new proposition
write this equivalence in CNF

Transformation rules for three basic operators
formula p ↔ formula rewritten in CNF
¬A (¬A→ p) ∧ (p → ¬A) (A ∨ p) ∧ (¬A ∨ ¬p)
A ∧ B (A ∧ B → p) ∧ (p → A ∧ B) (¬A ∨ ¬B ∨ p) ∧ (A ∨ ¬p) ∧ (B ∨ ¬p)
A ∨ B (p → A ∨ B) ∧ (A ∨ B → p) (A ∨ B ∨ ¬p) ∧ (¬A ∨ p) ∧ (¬B ∨ p)



Tseitin Transformation: Example
Add numbered proposition for each operator:
(a

1
∧ ¬b) ∨ ¬(c

2
∧ d)

no need to number negations
nor top-level operator (...) ∨ (...)

New propositions: p1 ↔ a
1
∧ ¬b, p2 ↔ c

2
∧ d .

Rewrite equivalences for new propositions in CNF,
conjunct with top-level operator of formula:

(p1 ∨ ¬p2) overall formula
∧ (¬a ∨ b ∨ p1) ∧ (a ∨ ¬p1) ∧ (¬b ∨ ¬p1) p1 ↔ a∧¬b
∧ (¬c ∨ ¬d ∨ p2) ∧ (c ∨ ¬p2) ∧ (d ∨ ¬p2) p2 ↔ c∧d

Can direcly transform multi-argument conjunctions/disjunctions
AND (¬A1 ∨ ¬A2 ∨ ¬A3 ∨ p) ∧ (A1 ∨ ¬p) ∧ (A2 ∨ ¬p) ∧ (A3 ∨ ¬p)
OR (A1 ∨ A2 ∨ A3 ∨ ¬p) ∧ (¬A1 ∨ p) ∧ (¬A2 ∨ p) ∧ (¬A3 ∨ p)



Tseitin Transformation: Circuit View

(a ∨ ¬b) ∧ ¬(c
1
∨ d)

Each gate input: one new proposition
not needed for ∨ as input to ∧
not needed for top level ∧

Example: a single new proposition
(a ∨ ¬b) ∧ ¬p1 our formula
∧(p1 ↔ c ∨ d) meaning of p1

∨

¬∨
∧

¬p1

a
¬b

c
d p1

Convert each equivalence to CNF (by the above rules)
combine them with ∧

(a ∨ ¬b) ∧ p1 top level (result)
∧(c ∨ d ∨ ¬p1) ∧ (¬c ∨ p1) ∧ (¬d ∨ p1)



What Do We Get?

A new formula with more propositions than the original one
NOT an equivalent formula

New formula is satisfiable iff the original is satisfiable
we call it equisatisfiable)

Size of resulting formula: linear in original size
good for use in satisfiability checking


