
H250: Honors Colloquium – Introduction to Computation

Representing Propositional Formulas

Marius Minea
marius@cs.umass.edu

mailto:marius@cs.umass.edu

Colloquium Topics (tentative)

Binary decision diagrams
Conjunctive normal form
SAT checking
Axiomatization of logic
Resolution theorem proving, unification
Fixpoint theorem
Representing and exploring search spaces
Number Theory
Combinatorics
Linear recurrences
Recursive tree traversals
Grammars and parsing
Automata properties and testing
Automata learning

Logistics

Grading:

70% homeworks (∼1 problem / week)

30% final project (discuss/agree topic by Columbus Day)

Q&A: Campuswire

Today

Binary Decision Diagrams

Conjunctive Normal Form

Tseitin Transformation

Review: Propositional Formulas

Boolean operators: ¬,∧,∨.
We’ll rewrite →,↔,⊕ in these terms.

Interesting Questions:

Are two formulas A and B equivalent? A↔ B

Is a formula a tautology ? (true in all truth assignments)

Is a formula satisfiable? (in at least one truth assignment)

Is a formula a contradiction? (has no satisfying assignment)

Representing Propositional Formulas

Ideally, a representation should be

canonical (a formula is represented in a single way)
two formulas are equal precisely if they have same representation

simple and compact (easy to implement and store)

easy to process (simple, efficient algorithms)

Binary decision diagrams are such a representation for Boolean
formulas (Bryant, 1986)

Review: Truth tables

Truth tables show the value of a formula for all truth assignments
(all interpretations).

Two formulas are equivalent if they have the same truth table

But: 2n combinations (lines) for a formula with n propositions

a b c a →(b →c)
F F F T
F F T T
F T F T
F T T T
T F F T
T F T T
T T F F
T T T T

a b c (a →b) →c
F F F F
F F T T
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

Boole expansion / Shannon decomposition wrt a variable

By fixing the value of a variable, the formula simplifies

Let f = (a ∨ b) ∧ (a ∨ c) ∧ (¬a ∨ ¬b ∨ c).
We assign values T and F to variable a (two halves of truth table)

f|a=T = T∧T∧(¬b ∨ c) = ¬b ∨ c f|a=F = b∧c∧T = b∧c

Boole expansion
(or Shannon decomposition)

f = x ∧ f|x=T ∨ ¬x ∧ f|x=F

expresses a Boolean function f
with respect to a variable x

x

f|x=F f|x=T

F T

In code (ML): if-then-else with variable as condition
if a then not b || c else b && c

Binary decision tree
Continuing with subformulas, we obtain a decision tree:
assigning variables and following branches (true/false),
we obtain the function value (T /F , or 0/1)

f|a=T = T∧T∧(¬b ∨ c) = ¬b ∨ c f|a=F = b∧¬c∧T = b∧c
f|a=T ,b=F = T , f|a=T ,b=T = c, etc.

a

b b

c c

F F T T F T

if a then
if b then if c then true

else false
else true

else
if b then if c then true

else false
else false

With a fixed variable ordering, the tree is unique: canonical
still inefficient: up to 2n possible combinations, like the truth table

From decision tree to decision diagram

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 0 1

f (x1, x2, x3) = (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)
e.g., f (T , F , T) = T , f (F , T , F) = F , etc.

leaf/terminal nodes: function value (0 or 1, i.e, F or T)
inner/nonterminal nodes: xi (variables the function depends on)
branches: low(n) / high(n) : assignment F/T of node variable

We define 3 transformation rules for a more compact form:
binary decision diagram.

Reduction nr. 1: Merge leaf nodes
We keep a single copy for nodes 0 and 1

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 0 1

x1

x2 x2

x3 x3 x3 x3

0 1

Reduction nr. 2: Merge nodes with same structure

If low(n1) = low(n2) and high(n1) = high(n2), we merge n1 and n2

two nodes with equal results on the false branch and equal results
on the true branch yield the same value

x1

x2 x2

x3 x3 x3 x3

0 1 →

x1

x2 x2

x3 x3

0 1

Reduction nr. 3: Eliminate useless tests

Eliminate nodes with the same result on false and true branches

x1

x2 x2

x3 x3

0 1 →

x1

x2

x3

0 1

Review: from tree to binary decision diagram

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 0 1 →

x1

x2

x3

0 1

binary decision tree binary decision diagram

The three reductions are used to define a BDD.
In practice, we want to avoid the decision tree due to its size.
We directly apply expansion with respect to a variable

Practical BDD construction

Don’t start from a complete binary tree

Build BDD directly, recursively, decomposing with respect to a
variable:

x1

f|x1=F f|x1=T

f = x1 ∧ f |x1=T ∨¬x1 ∧ f |x1=F

build f |x1=T and f |x1=F

merge any common nodes

BDD libraries: use recursive processing with lookup/hashing
if BDD already exists, it is found and used, not duplicated
equivalence check is effectively pointer comparison!

Example BDD construction
f (x1, x2, x3) = (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)
Choose a variable: x1. Compute f |x1=F and f |x1=T

Build BDD for the two functions: directly, if simple (T, F, p, ¬p),
else recursively, choosing a new variable:

f1 = f |x1=F = x2 ∧ x3 f |x1=T = x3
f1|x2=F = F f1|x2=T = x3

0

x3

0 1

x3

0 1
↓

Add decision node for x2
↓

x2

x3

0 1

Add decision
based on x1

−→

x1

x2

x3

0 1
The BDD rooted at x3 is common, we keep one copy.

Use of BDDs

Represent Boolean functions efficiently
small in many practical cases (still worst-case exponential)

Check equivalence of two Boolean functions

Both are needed in CAD software for circuit design (logic synthesis)
apply optimizations
then check that result is correct (equivalent to original)

(two equivalent circuits/functions must have same BDD)

Frequent use in formal verification (check system correctness),
efficiently represent large state spaces, etc.

Construct BDDs interactively:
http://formal.cs.utah.edu:8080/pbl/BDD.php

http://formal.cs.utah.edu:8080/pbl/BDD.php

Review: Representation Questions

Can we represent a propositional formula in a “systematic” way?

Can we represent propositional formulas uniquely ?

Ideally, a representation should be

simple and compact (easy to implement and store)

easy to process (simple, efficient algorithms)

canonical (a formula is represented in a single way)
two formulas are equal precisely if they have same representation

