
COMPSCI 501: Formal Language Theory
Lecture 9: Equivalence of CFG and PDA

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

11 February 2019

CFG and PDA equivalence

Theorem: A language is context-free if and only if some pushdown
automaton recognizes it
I Two constructions, one for each direction
I CFG → PDA: nondeterminism needed to choose rule
I PDA → CFG: one rule per state pair, induction proof

Example: recognizing a CFL

Prefix expressions:

E → num | + E E | ∗ E E

top-down

Postfix expressions

E → num | E E + | E E ∗
top-down
bottom-up

Constructing a PDA from a CFG
PDA successively applies production rules

118 CHAPTER 2 / CONTEXT-FREE LANGUAGES

symbol on the stack and that may be a terminal symbol instead of a variable. The
way around this problem is to keep only part of the intermediate string on the
stack: the symbols starting with the first variable in the intermediate string. Any
terminal symbols appearing before the first variable are matched immediately
with symbols in the input string. The following figure shows the PDA P .

FIGURE 2.22

P representing the intermediate string 01A1A0

The following is an informal description of P .

1. Place the marker symbol $ and the start variable on the stack.

2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules forA and substituteA by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

PROOF We now give the formal details of the construction of the pushdown
automaton P = (Q, Σ, Γ, δ, qstart, F). To make the construction clearer, we use
shorthand notation for the transition function. This notation provides a way to
write an entire string on the stack in one step of the machine. We can simulate
this action by introducing additional states to write the string one symbol at a
time, as implemented in the following formal construction.

Let q and r be states of the PDA and let a be in Σε and s be in Γε. Say that
we want the PDA to go from q to r when it reads a and pops s. Furthermore, we
want it to push the entire string u = u1 · · · ul on the stack at the same time. We
can implement this action by introducing new states q1, . . . , ql−1 and setting the

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I Initially: start symbol on stack
I Invariant: nonterminal on stack top
I Replace nonterminal with RHS of production rule

chosen nondeterministically, push symbols right to left
I Match terminal(s) on top of stack with input

or fail on current branch for chosen rule
I Repeat with top nonterminal until stack empty

accept if all input read

Construction Details

Overall construction

i a
ε, ε→ $ ε, ε→ S

a, a→ ε for term. a

ε, A→ w for rule A→ w

ε, $→ ε

Implementing production rule A→ u1u2 . . . un:
pop one symbol (A) from stack, push n symbols

ε, A→ un ε, ε→ un−1 ε, ε→ u2 ε, ε→ u1

From PDA to CFG
Transform PDA to simplified form
I Single accept state

ε, ε→ ε

I Empty stack before accepting

ε, Γ→ ε

ε, $→ ε

I Each transition either pushes or pops, not both

replace qs
a,b/c−→ qf with qs

a,b/ε−→ qi
ε,ε/c−→ qf

replace qs
a,ε/ε−→ qf with qs

a,ε/b−→ qi
ε,b/ε−→ qf for some b ∈ Γ

PDA to CFG: State Pair to Nonterminal
Recall NFA → GNFA → regex:

express (regex) all strings taking automaton between two states

Idea: characterize all strings that take automaton from
(p, empty stack) to (q, empty stack).

then: same for arbitrary stack, will not be touched

Two cases:
I will empty stack somewhere in between (some state r)

can express as Apq → AprArq

I stack stays nonempty: first: push u, last: pop u (same)

1. push u on input a: p
a,ε/u−→ r

2. r s without touching stack (Ars)
3. pop u on input b: s

b,u/ε−→ q

⇒ add rule Apq → aArsb

PDA to CFG Construction

Consider PDA P = (Q, Σ, Γ, q0, {qacc}).
Construct grammar G with variables Apq|p, q ∈ Q

1. Add rule Apq → aArsb if p
a/push u−→ r and s

b/pop u−→ q.

2. Add rule Apq → AprArq for any p, q, r ∈ Q.

3. Add rule App → ε for any p ∈ Q.
(no action = empty production)

Start symbol is Aq0,qacc .

PDA to CFG Proof (1)
If Apq generates x, then x can bring P from state p with empty
stack to state q with empty stack.

Induction by number of steps in derivation Apq
∗⇒ x

Base case: k = 1 step ⇒ RHS has no variables. Only rules are
App → ε.
Clearly, with no action, P stays in same state with empty stack.

Inductive step: Assume Apq
∗⇒ x in k + 1 steps.

Case 1: Apq ⇒ aArsb. Then x = ayb and Ars
∗⇒ y in k steps.

Thus, P goes on y from r to s on empty stack.
By construction, p

a/push u−→ r and s
b/pop u−→ q for some symbol u, thus

we go from p to r to s to q on empty stack. .

Case 2: Apq ⇒ AprArq.
Then x = yz with Apr

∗⇒ y and Arq
∗⇒ z in ≤ k steps.

Thus P goes from p to r by y on empty stack, then from r to q by
z on empty stack.

PDA to CFG Proof (2)
If x can bring P from state p with empty stack to state q with
empty stack, then Apq generates x.

Induction by number of steps in P ′ computation p p

Base case: k = 0. P does nothing reads no input) ⇒ x = ε
This is achieved by rule App → ε

Inductive step: Consider computation of length k + 1 > 0.

Case 1: stack only empty at start and end ⇒ must start/end with
push u / pop u. Then we have p

a/push u−→ r and s
b/pop u−→ q, x = ayb.

String y brings P from r to s without touching stack (not emptied).
y takes k − 1 steps, so Ars

∗⇒ y, thus Apq
∗⇒ ayb = x

Case 2: stack becomes empty at some state r.
p r and r q have each ≤ k steps.
Then we have Apr

∗⇒ y and Arq
∗⇒ z

Since we have rule Apq → AprArq we are done.

