COMPSCI 501: Formal Language Theory
Lecture 9: Equivalence of CFG and PDA

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

11 February 2019

CFG and PDA equivalence

Theorem: A language is context-free if and only if some pushdown
automaton recognizes it

» Two constructions, one for each direction
» CFG — PDA: nondeterminism needed to choose rule

» PDA — CFG: one rule per state pair, induction proof

Example: recognizing a CFL

Prefix expressions:
E—-num| + EFE| x EE

top-down

Postfix expressions
E—nun|EE + |EEx

top-down
bottom-up

Constructing a PDA from a CFG

PDA successively applies production rules

control
\—V—J
= / 0]
8]

s ——
01 A1AO0

v

Initially: start symbol on stack
Invariant: nonterminal on stack top
Replace nonterminal with RHS of production rule
chosen nondeterministically, push symbols right to left
Match terminal(s) on top of stack with input
or fail on current branch for chosen rule
Repeat with top nonterminal until stack empty
accept if all input read

vy

v

v

Construction Details

Overall construction

a,a — ¢ for term. a

H@e,safﬁ@s.saséa.ﬁ%s@

e, A— wforrule A— w

Implementing production rule A — uqug ... up:
pop one symbol (A) from stack, push n symbols

Qs A—>un/\5 £ = Up—1 £, — Ug me,e—rul
OO0

From PDA to CFG
Transform PDA to simplified form

» Single accept state

€,€ > € i j

» Empty stack before accepting

eI —e

e,$—e

» Each transition either pushes or pops, not both

2

b/c . ab/e ee/c
replace gs — qy with ¢ — ¢; — qr

=]

£ /b ,b
replace ¢ vels qr with g gl qi bl qy for some b €T’

PDA to CFG: State Pair to Nonterminal

Recall NFA — GNFA — regex:
express (regex) all strings taking automaton between two states

Idea: characterize all strings that take automaton from
(p, empty stack) to (g, empty stack).
then: same for arbitrary stack, will not be touched

Two cases:

> will empty stack somewhere in between (some state)
can express as Apg — AprArg

> stack stays nonempty: first: push u, last: pop u (same)
1. push woninput a: p a’i/;‘ r
2. 1~ s without touching stack (A;s)
. bu/e
3. pop u on input b: s — ¢

= add rule Ay, — aA,sb

PDA to CFG Construction

Consider PDA P = (Q 27 F7 q0, {Q(Jcc})-

Construct grammar G with variables A,[p,q € Q

1. Add rule Ayg — ad,sb if p /P8 " and s PR g,

2. Add rule Apy = Ay Arg for any p,q,r € Q.

3. Add rule Ay, — ¢ for any p € Q.
(no action = empty production)

Start symbol is Ag,

Gacc*

PDA to CFG Proof (1)

If A,, generates x, then x can bring P from state p with empty
stack to state ¢ with empty stack.

Induction by number of steps in derivation Ay, 2z

Base case: k = 1 step = RHS has no variables. Only rules are
App —> €.
Clearly, with no action, P stays in same state with empty stack.

Inductive step: Assume A, = 2in k + 1 steps.

Case 1: Apg = aA;sb. Then z = ayb and A, 2 y in k steps.

Thus, P goes on y from r to s on empty stack.

h b
By construction, p a/g “rand s /ﬂ” q for some symbol u, thus

we go from p to r to s to ¢ on empty stack. .

Case 2: Apy = Apr Ay

Then z = yz with A, = yand Arq = 2 in < k steps.

Thus P goes from p to r by y on empty stack, then from r to ¢ by
z on empty stack.

PDA to CFG Proof (2)

If can bring P from state p with empty stack to state ¢ with
empty stack, then A, generates z.

Induction by number of steps in P’ computation p ~ p

Base case: k = 0. P does nothing reads no input) =z = ¢
This is achieved by rule A,, — ¢

Inductive step: Consider computation of length £+ 1 > 0.

Case 1: stack only empty at start and end = must start/end with

ho b/pop
push u / pop u. Then we have p o/Pub L nd s PR q, * = ayb.

String y brings P from r to s without touching stack (not emptied).
y takes k — 1 steps, so A, = v, thus Apg = ayb=1x

Case 2: stack becomes empty at some state r.
p~+ 1 and r ~ g have each < k steps.

Then we have A, = y and A, = 2

Since we have rule A,; — A, A, we are done.

