Example: recognizing a CFL

Prefix expressions:
\[E \rightarrow \text{num} \mid + E E \mid \ast E E \]
top-down
Postfix expressions
\[E \rightarrow \text{num} \mid E E + \mid E E \ast \]
top-down bottom-up

Construction Details

Overall construction
\[a, a \rightarrow \varepsilon \text{ for term. } a \]
\[\varepsilon, \varepsilon \rightarrow \$ \]
\[\varepsilon, \varepsilon \rightarrow \$ \]
\[\varepsilon, \$ \rightarrow \varepsilon \]
\[\varepsilon, A \rightarrow w \text{ for rule } A \rightarrow w \]
Implementing production rule \(A \rightarrow u_1 u_2 \ldots u_n \); pop one symbol \((A)\) from stack, push \(n\) symbols
\[\varepsilon, A \rightarrow u_1 \]
\[\varepsilon, A \rightarrow u_2 \]
\[\varepsilon, A \rightarrow u_n \]

From PDA to CFG

Transform PDA to simplified form
\[\varepsilon, \varepsilon \rightarrow \varepsilon \]
\[\varepsilon, \Gamma \rightarrow \varepsilon \]
\[\varepsilon, \$ \rightarrow \varepsilon \]

Each transition either pushes or pops, not both
replace \(q_s \overset{a,b,c}{\rightarrow} q_f \) with \(q_s \overset{a,b,c}{\rightarrow} q_i \overset{c}{\rightarrow} q_f \)
replace \(q_s \overset{a,c}{\rightarrow} q_f \) with \(q_s \overset{a,c,b}{\rightarrow} q_i \overset{c}{\rightarrow} q_f \) for some \(b \in \Gamma \)
PDA to CFG: State Pair to Nonterminal

Recall NFA → GNFA → regex:
express (regex) all strings taking automaton between two states

Idea: characterize all strings that take automaton from
(p, empty stack) to (q, empty stack).

Then: same for arbitrary stack, will not be touched

Two cases:

1. will empty stack somewhere in between (some state r)
 can express as \(A_{pq} \rightarrow A_{pr}A_{rq} \)
2. stack stays nonempty: first: push u, last: pop u (same)
 1. push u on input a: \(a_a / u \rightarrow r \)
 2. \(r \rightarrow s \) without touching stack (\(A_{rs} \))
 3. pop u on input b: \(b_u / \epsilon \rightarrow q \)

Thus we have rule \(A_{pq} \rightarrow A_{pr}A_{rq} \)

PDA to CFG Construction

Consider PDA \(P = (Q, \Sigma, \Gamma, q_0, \{q_{acc}\}) \).

Construct grammar \(G \) with variables \(A_{pq} | p, q \in Q \)

1. Add rule \(A_{pq} \rightarrow a A_{pr}b \) if \(p \xrightarrow{a/\text{push } u} r \) and \(s \xrightarrow{b/\text{pop } u} q \).
2. Add rule \(A_{pq} \rightarrow A_{pr}A_{rq} \) for any \(p, q, r \in Q \).
3. Add rule \(A_{pq} \rightarrow \epsilon \) for any \(p \in Q \).
 (no action = empty production)

Start symbol is \(A_{q_0,q_{acc}} \).

PDA to CFG Proof (1)

If \(A_{pq} \) generates \(x \), then \(x \) can bring \(P \) from state \(p \) with empty stack to state \(q \) with empty stack.

Induction by number of steps in derivation \(A_{pq} \Rightarrow x \)

Base case: \(k = 1 \) step ⇒ RHS has no variables. Only rules are \(A_{pp} \rightarrow \epsilon \).

Clearly, with no action, \(P \) stays in same state with empty stack.

Inductive step: Assume \(A_{pq} \Rightarrow x \) in \(k + 1 \) steps.

Case 1: \(A_{pq} \Rightarrow a A_{rs} b \). Then \(x = ayb \) and \(A_{rs} \Rightarrow y \) in \(k \) steps.

Thus, \(P \) goes on \(y \) from \(r \) to \(s \) on empty stack.

By construction, \(p \xrightarrow{a/\text{push } u} r \) and \(s \xrightarrow{b/\text{pop } u} q \) for some symbol \(u \), thus we go from \(p \) to \(r \) to \(s \) to \(q \) on empty stack.

Case 2: \(A_{pq} \Rightarrow A_{pr} A_{rq} \).

Then \(x = yz \) with \(A_{ps} \Rightarrow y \) and \(A_{qs} \Rightarrow z \) in \(\leq k \) steps.

Thus \(P \) goes from \(p \) to \(r \) by \(y \) on empty stack, then from \(r \) to \(q \) by \(z \) on empty stack.

PDA to CFG Proof (2)

If \(x \) can bring \(P \) from state \(p \) with empty stack to state \(q \) with empty stack, then \(A_{pq} \) generates \(x \).

Induction by number of steps in \(P' \) computation \(p \rightarrow p \)

Base case: \(k = 0 \). \(P \) does nothing reads no input) ⇒ \(x = \epsilon \)

This is achieved by rule \(A_{pp} \rightarrow \epsilon \)

Inductive step: Consider computation of length \(k + 1 > 0 \).

Case 1: stack only empty at start and end ⇒ must start/end with push \(u / \text{pop } u \). Then we have \(p \xrightarrow{a/\text{push } u} r \) and \(s \xrightarrow{b/\text{pop } u} q \), \(x = ayb \).

String \(y \) brings \(P \) from \(r \) to \(s \) without touching stack (not emptied).

\(y \) takes \(k - 1 \) steps, so \(A_{rs} \Rightarrow y \), thus \(A_{pq} \Rightarrow ayb = x \)

Case 2: stack becomes empty at some state \(r \).

\(p \rightarrow r \) and \(r \rightarrow q \) have each \(\leq k \) steps.

Then we have \(A_{ps} \Rightarrow y \) and \(A_{qs} \Rightarrow z \)

Since we have rule \(A_{pq} \rightarrow A_{ps} A_{qs} \) we are done.