

PDA to CFG: State Pair to Nonterminal

Recall NFA \rightarrow GNFA \rightarrow regex: express (regex) all strings taking automaton between two states

Idea: characterize all strings that take automaton from (p, empty stack) to (q, empty stack). then: same for arbitrary stack, will not be touched

Two cases:

- ▶ will empty stack somewhere in between (some state r) can express as $A_{pq} \rightarrow A_{pr}A_{rq}$
- **>** stack stays nonempty: first: push u, last: pop u (same)
- 1. push u on input a: $p \xrightarrow{a,\varepsilon/u} r$

2.
$$r \rightsquigarrow s$$
 without touching stack (A_{rs})

3. pop u on input b: $s \xrightarrow{b,u/\varepsilon} q$

 \Rightarrow add rule $A_{pq} \rightarrow aA_{rs}b$

PDA to CFG Proof (1)

If A_{pq} generates x, then x can bring P from state p with empty stack to state q with empty stack.

Induction by number of steps in derivation $A_{pq} \stackrel{*}{\Rightarrow} x$

Base case: k=1 step \Rightarrow RHS has no variables. Only rules are $A_{pp} \to \varepsilon.$

Clearly, with no action, \boldsymbol{P} stays in same state with empty stack.

Inductive step: Assume $A_{pq} \stackrel{*}{\Rightarrow} x$ in k+1 steps.

Case 1: $A_{pq} \Rightarrow aA_{rs}b$. Then x = ayb and $A_{rs} \stackrel{*}{\Rightarrow} y$ in k steps. Thus, P goes on y from r to s on empty stack. By construction, $p \xrightarrow{a/\text{push } u} r$ and $s \xrightarrow{b/\text{pop } u} q$ for some symbol u, thus we go from p to r to s to q on empty stack.

Case 2: $A_{pq} \Rightarrow A_{pr}A_{rq}$.

Then x = yz with $A_{pr} \stackrel{*}{\Rightarrow} y$ and $A_{rq} \stackrel{*}{\Rightarrow} z$ in $\leq k$ steps. Thus P goes from p to r by y on empty stack, then from r to q by z on empty stack.

PDA to CFG Construction

Consider PDA $P = (Q, \Sigma, \Gamma, q_0, \{q_{acc}\}).$

Construct grammar G with variables $A_{pq}|p,q \in Q$

- 1. Add rule $A_{pq} \to aA_{rs}b$ if $p \xrightarrow{a/\text{push } u} r$ and $s \xrightarrow{b/\text{pop } u} q$.
- 2. Add rule $A_{pq} \rightarrow A_{pr}A_{rq}$ for any $p, q, r \in Q$.
- 3. Add rule $A_{pp} \rightarrow \varepsilon$ for any $p \in Q$. (no action = empty production)

Start symbol is $A_{q_0,q_{acc}}$.

PDA to CFG Proof (2)

If x can bring P from state p with empty stack to state q with empty stack, then A_{pq} generates x.

Induction by number of steps in P' computation $p \leadsto p$

Base case: k=0. P does nothing reads no input) $\Rightarrow x=\varepsilon$ This is achieved by rule $A_{pp} \to \varepsilon$

Inductive step: Consider computation of length k + 1 > 0.

Case 1: stack only empty at start and end \Rightarrow must start/end with push u / pop u. Then we have $p \xrightarrow{a/\text{push } u} r$ and $s \xrightarrow{b/\text{pop } u} q$, x = ayb. String y brings P from r to s without touching stack (not emptied). y takes k - 1 steps, so $A_{rs} \xrightarrow{*} y$, thus $A_{pq} \xrightarrow{*} ayb = x$

Case 2: stack becomes empty at some state r. $p \rightsquigarrow r$ and $r \rightsquigarrow q$ have each $\leq k$ steps. Then we have $A_{pr} \stackrel{*}{\Rightarrow} y$ and $A_{rq} \stackrel{*}{\Rightarrow} z$ Since we have rule $A_{pq} \rightarrow A_{pr}A_{rq}$ we are done.