
COMPSCI 501: Formal Language Theory
Lecture 8: Pushdown Automata

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

8 February 2019

Generators and Recognizers

I Generators: produce all strings in a language
regular expressions, grammars
“declarative” (string/set operations)

I Recognizer: tells if string is in a language
DFA, NFA, pushdown automata
“mechanical” / algorithmic

Related, often simple, direct constructions
regular expression → NFA
regex derivative → DFA

Control and Data

Programs have both control (program counter) and variables.

What programs are equivalent to DFAs?

finite (global) variables, no procedures

Q = Lpc ×D1 × . . .×Dn where Di = domain of variable vi

Lpc = set of program counter locations,

Pushdown Automata: Add a Stack

112 CHAPTER 2 / CONTEXT-FREE LANGUAGES

With the addition of a stack component we obtain a schematic representation
of a pushdown automaton, as shown in the following figure.

FIGURE 2.12

Schematic of a pushdown automaton

A pushdown automaton (PDA) can write symbols on the stack and read them
back later. Writing a symbol “pushes down” all the other symbols on the stack.
At any time the symbol on the top of the stack can be read and removed. The
remaining symbols then move back up. Writing a symbol on the stack is of-
ten referred to as pushing the symbol, and removing a symbol is referred to as
popping it. Note that all access to the stack, for both reading and writing, may
be done only at the top. In other words a stack is a “last in, first out” storage
device. If certain information is written on the stack and additional information
is written afterward, the earlier information becomes inaccessible until the later
information is removed.

Plates on a cafeteria serving counter illustrate a stack. The stack of plates
rests on a spring so that when a new plate is placed on top of the stack, the plates
below it move down. The stack on a pushdown automaton is like a stack of
plates, with each plate having a symbol written on it.

A stack is valuable because it can hold an unlimited amount of information.
Recall that a finite automaton is unable to recognize the language {0n1n|n ≥ 0}
because it cannot store very large numbers in its finite memory. A PDA is able to
recognize this language because it can use its stack to store the number of 0s it
has seen. Thus the unlimited nature of a stack allows the PDA to store numbers of
unbounded size. The following informal description shows how the automaton
for this language works.

Read symbols from the input. As each 0 is read, push it onto the stack. As
soon as 1s are seen, pop a 0 off the stack for each 1 read. If reading the
input is finished exactly when the stack becomes empty of 0s, accept the
input. If the stack becomes empty while 1s remain or if the 1s are finished
while the stack still contains 0s or if any 0s appear in the input following
1s, reject the input.

As mentioned earlier, pushdown automata may be nondeterministic. Deter-
ministic and nondeterministic pushdown automata are not equivalent in power.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

One step moves to another state and stack contents.

Stack can store more than just input symbols
(different / richer alphabet)

In addition: nondeterminism (crucial in some cases)

Recognizing 0n1n

L = {0n1n | n ≥ 0}
I while zeroes, put on stack
I while ones, pop 0 from stack (reject on underflow)
I accept if end of input and stack empty

Can do: finite (global) variables + stack

How about global vars + function calls + finite local vars ?

Pushdown Automata: Definition

A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F ), where all
sets are finite, and

1. Q is the set of states
2. Σ is the input alphabet
3. Γ is the stack alphabet
4. δ : Q× Σε × Γε → P(Q× Γε) is the transition function
5. q0 ∈ Q is the start state
6. F ⊆ Q is the set of accept states

where Σε = Σ ∪ {ε}, Γε = Γ ∪ {ε}.

PDA can only look at top of stack
Full stack contents not part of transition function



Transitions and Stack

Transition: input × stack symbol → stack symbol

Written a, b→ c: on input a, replace stack top b with c

Can have any combination of:
I a = ε: read no input symbol
I b = ε: pop nothing from stack
I c = ε: push nothing on stack

In particular:
I a, ε→ c means push(c) (on input a)
I a, b→ ε means pop(b) (on input a)

Computations of PDA

PDA accepts input if we can write it (perhaps with ε’s) as
w = w1w2 . . . wm, wi ∈ Σε, and we have
– a state sequence r0, r1, . . . , rm ∈ Q and
– a sequence of stack strings s0, s1, . . . , sm ∈ Γ∗ such that

1. Initial: r0 = q0, s0 = ε (empty stack)
2. Step: (ri, b) ∈ δ(ri, wi+1, a), where si = at and si+1 = bt

(replace a with b, top of stack = start of stack string)
3. Accept: rm ∈ F : in accept state at input end

Representing PDAs: 0n1n
2.2 PUSHDOWN AUTOMATA 115

FIGURE 2.15

State diagram for the PDA M1 that recognizes {0n1n| n ≥ 0}

The formal definition of a PDA contains no explicit mechanism to allow the
PDA to test for an empty stack. This PDA is able to get the same effect by initially
placing a special symbol $ on the stack. Then if it ever sees the $ again, it knows
that the stack effectively is empty. Subsequently, when we refer to testing for an
empty stack in an informal description of a PDA, we implement the procedure in
the same way.

Similarly, PDAs cannot test explicitly for having reached the end of the input
string. This PDA is able to achieve that effect because the accept state takes effect
only when the machine is at the end of the input. Thus from now on, we assume
that PDAs can test for the end of the input, and we know that we can implement
it in the same manner.

EXAMPLE 2.16

This example illustrates a pushdown automaton that recognizes the language

{aibjck| i, j, k ≥ 0 and i = j or i = k}.

Informally, the PDA for this language works by first reading and pushing
the a’s. When the a’s are done, the machine has all of them on the stack so
that it can match, them with either the b’s or the c’s. This maneuver is a bit
tricky because the machine doesn’t know in advance whether to match the a’s
with the b’s or the c’s. Nondeterminism comes in handy here.

Using its nondeterminism, the PDA can guess whether to match the a’s with
the b’s or with the c’s, as shown in Figure 2.17. Think of the machine as having
two branches of its nondeterminism, one for each possible guess. If either of
themmatches, that branch accepts and the entire machine accepts. Problem 2.57
asks you to show that nondeterminism is essential for recognizing this language
with a PDA.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Transition to accepting state happens on empty stack ($)

Useful Tests: empty stack, end of input

I Testing for empty stack

not in formal definition
transition a, ε→ c does not mean stack empty
place special symbol at bottom and recognize

I Testing for end of input

PDA can’t explicitly test for end of input
but checking for accept state only happens at end of input
(can effectively assume we’re able to test for end of input)

Some PDA definitions require empty stack at the end – not here.
Versions are equivalent

Example: Three counters, two equal
L = {aibjck | i, j, k ≥ 0, i = j or i = k}

How do we know whether to match b’s or c’s ? Nondeterminism
116 CHAPTER 2 / CONTEXT-FREE LANGUAGES

FIGURE 2.17

State diagram for PDA M2 that recognizes
{aibjck| i, j, k ≥ 0 and i = j or i = k}

EXAMPLE 2.18

In this example we give a PDA M3 recognizing the language {wwR|w ∈ {0,1}∗}.
Recall that wR means w written backwards. The informal description and state
diagram of the PDA follow.

Begin by pushing the symbols that are read onto the stack. At each point,
nondeterministically guess that the middle of the string has been reached and
then change into popping off the stack for each symbol read, checking to see that
they are the same. If they were always the same symbol and the stack empties at
the same time as the input is finished, accept; otherwise reject.

FIGURE 2.19

State diagram for the PDA M3 that recognizes {wwR| w ∈ {0, 1}∗}

Problem 2.58 shows that this language requires a nondeterministic PDA.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Other Examples

I Equal number of 0 and 1: stack keeps difference

i c

0 1

a
ε, ε→ $ ε, $→ ε

0, 0
→

0
0, $
→

$

1, 1→
1

1, $→
$

0, 1→ ε1, 0→ ε

ε,
ε
→

0

ε, ε→
1

I Even-length palindrome

L = {wwR | w ∈ {0, 1}∗} must use nondeterminism


