COMPSCI 501: Formal Language Theory

Lecture 8: Pushdown Automata
Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

8 February 2019

Generators and Recognizers

» Generators: produce all strings in a language
regular expressions, grammars
“declarative” (string/set operations)

» Recognizer: tells if string is in a language
DFA, NFA, pushdown automata
“mechanical” / algorithmic

Related, often simple, direct constructions
regular expression — NFA
regex derivative — DFA

Control and Data

Programs have both control (program counter) and variables.
What programs are equivalent to DFAs?
finite (global) variables, no procedures

=Ly x Dy x...xD, where D; = domain of variable v;
P
Ly, = set of program counter locations,

Pushdown Automata: Add a Stack

state
control Eann input

X

y | stack
z

One step moves to another state and stack contents.

Stack can store more than just input symbols
(different / richer alphabet)

In addition: nondeterminism (crucial in some cases)

Recognizing 01"

L={0"1"|n>0}

» while zeroes, put on stack
> while ones, pop 0 from stack (reject on underflow)
» accept if end of input and stack empty

Can do: finite (global) variables + stack

How about global vars + function calls + finite local vars 7

Pushdown Automata: Definition

A pushdown automaton is a 6-tuple (Q, X, T, d, go, F), where all
sets are finite, and

. Q is the set of states

. Y is the input alphabet

. I is the stack alphabet

L 0:Q x X xTe = P(Q x T¢) is the transition function
. qo € Q is the start state

6. F' C Q is the set of accept states

where ¥, =X U {e}, I'. =T U{e}.

Tl wW N

PDA can only look at top of stack
Full stack contents not part of transition function

Transitions and Stack

Transition: input x stack symbol — stack symbol
Written a,b — ¢: on input a, replace stack top b with ¢
Can have any combination of:

» a = ¢: read no input symbol
» b =¢e: pop nothing from stack
» ¢ = e: push nothing on stack

In particular:

» a,e — ¢ means push(c) (on input a)
> a,b — ¢ means pop(b) (on input a)

Computations of PDA

PDA accepts input if we can write it (perhaps with ¢'s) as
W= WiWs ... W, w; € X, and we have
— a state sequence ro,T1,...,Tm € Q and
— a sequence of stack strings sg, $1,...,Sm € I'* such that

1. Initial: 79 = qo, o = ¢ (empty stack)

2. Step: (r4,b) € 6(ri, wit1,a), where s; = at and s;+1 = bt
(replace a with b, top of stack = start of stack string)

3. Accept: 7, € F: in accept state at input end

Representing PDAs: 01"

Transition to accepting state happens on empty stack ($)

Useful Tests: empty stack, end of input

» Testing for empty stack

not in formal definition
transition a,e — ¢ does not mean stack empty
place special symbol at bottom and recognize

» Testing for end of input

PDA can't explicitly test for end of input
but checking for accept state only happens at end of input
(can effectively assume we're able to test for end of input)

Some PDA definitions require empty stack at the end — not here.
Versions are equivalent

Example: Three counters, two equal
L={abcF|i,j,k>0,i=jori=k}

How do we know whether to match b's or ¢'s ? Nondeterminism

b,a—€ C,E—E

a,e—a b,e—¢e c,a—€

FIGURE 2.17
State diagram for PDA M, that recognizes
{a'bick|i,j,k > 0andi=jori=k}

Other Examples

» Equal number of 0 and 1: stack keeps difference

1,0—>¢0,1 >¢

0 e s
—> 7 C
©

» Even-length palindrome

L= {ww®|we{0,1}*} must use nondeterminism

