COMPSCI 501: Formal Language Theory
Lecture 8: Pushdown Automata
Marius Minea
marius@cs.umass.edu
University of Massachusetts Amherst
8 February 2019

Generators and Recognizers

- **Generators**: produce all strings in a language
 - regular expressions, grammars
 - “declarative” (string/set operations)

- **Recognizer**: tells if string is in a language
 - DFA, NFA, pushdown automata
 - “mechanical” / algorithmic

Related, often simple, direct constructions
- regular expression → NFA
- regex derivative → DFA

Control and Data

Programs have both control (program counter) and variables.

What programs are equivalent to DFAs?
- finite (global) variables, no procedures

\[Q = L_{pc} \times D_1 \times \ldots \times D_n \]
\[L_{pc} = \text{set of program counter locations} \]

\[\Sigma = \epsilon \]
\[\Gamma = \epsilon \]
\[q_0 \]
\[F \]

In addition: **nondeterminism** (crucial in some cases)

Recognizing \(0^n1^n \)

\[L = \{0^n1^n \mid n \geq 0\} \]

- while zeroes, put on stack
- while ones, pop 0 from stack (reject on underflow)
- accept if end of input and stack empty

Can do: finite (global) variables + stack

How about global vars + function calls + finite local vars?

Pushdown Automata: Add a Stack

One step moves to another state and stack contents.

Stack can store more than just input symbols
- (different / richer alphabet)

In addition: **nondeterminism** (crucial in some cases)

Pushdown Automata: Definition

A pushdown automaton is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\), where all sets are finite, and

1. \(Q\) is the set of states
2. \(\Sigma\) is the input alphabet
3. \(\Gamma\) is the stack alphabet
4. \(\delta: Q \times \Sigma \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma)\) is the transition function
5. \(q_0 \in Q\) is the start state
6. \(F \subseteq Q\) is the set of accept states

where \(\Sigma_e = \Sigma \cup \{\epsilon\}\), \(\Gamma_e = \Gamma \cup \{\epsilon\}\).

PDA can only look at top of stack

Full stack contents not part of transition function
Transitions and Stack

Transition: input \times \text{stack symbol} \rightarrow \text{stack symbol}

Written \(a, b \rightarrow c\): on input \(a\), replace stack top \(b\) with \(c\)

Can have any combination of:

- \(a = \varepsilon\): read no input symbol
- \(b = \varepsilon\): pop nothing from stack
- \(c = \varepsilon\): push nothing on stack

In particular:

- \(a, \varepsilon \rightarrow c\) means push\((c)\) (on input \(a\))
- \(a, b \rightarrow \varepsilon\) means pop\((b)\) (on input \(a\))

Computations of PDA

PDA accepts input if we can write it (perhaps with \(\varepsilon\)'s) as \(w = w_1w_2 \ldots w_m, w_i \in \Sigma_i\), and we have

- a state sequence \(r_0, r_1, \ldots, r_m \in Q\) and
- a sequence of stack strings \(s_0, s_1, \ldots, s_m \in \Gamma^*\) such that

1. Initial: \(r_0 = q_0, s_0 = \varepsilon\) (empty stack)
2. Step: \((r_i, b) \in \delta(r_i, w_{i+1}, \varepsilon)\), where \(s_i = at\) and \(s_{i+1} = bt\)
 (replace \(a\) with \(b\), top of stack = start of stack string)
3. Accept: \(r_m \in F\): in accept state at input end

Useful Tests: empty stack, end of input

- Testing for empty stack
 not in formal definition
 transition \(a, \varepsilon \rightarrow c\) does not mean stack empty
 place special symbol at bottom and recognize

- Testing for end of input
 PDA can’t explicitly test for end of input
 but checking for accept state only happens at end of input
 (can effectively assume we’re able to test for end of input)

Some PDA definitions require empty stack at the end – not here. Versions are equivalent

Example: Three counters, two equal

\(L = \{a^i b^j c^k \mid i, j, k \geq 0, i = j \text{ or } i = k\}\)

How do we know whether to match \(b\)'s or \(c\)'s? Nondeterminism

\(\varepsilon, \varepsilon \rightarrow \$\) Transition to accepting state happens on empty stack ($\$\)

Other Examples

- Equal number of 0 and 1: stack keeps difference

\(1, 0 \rightarrow \varepsilon, 0, 1 \rightarrow \varepsilon\)

- Even-length palindrome

\(L = \{ww^R \mid w \in \{0, 1\}^*\}\) must use nondeterminism