	Grammars describe programming languages
COMPSCI 501: Formal Language Theory Lecture 7: Context-Free Grammars Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	<pre>(6.8.4) selection-statement: if (expression) statement if (expression) statement else statement switch (expression) statement (6.8.5) iteration-statement: while (expression) statement do statement while (expression); for (expression_{opt} ; expression_{opt}) statement for (declaration expression_{opt} ; expression_{opt}) statement</pre>
6 February 2019	
Grammars describe natural language	Terminology
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$ Grammar = set of productions (substitution rules) Left-hand side: variable (nonterminal) Right-hand side: string of symbols (variables and terminals) A start variable Derivation: apply substitution rules from start variable, until no variables remain. $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$ Or represent as parse tree.
Parse Tree for a Sentence Hierarchical representation of derivation	Formal Definition
Each symbol on RHS linked as child of LHS variable S A good student reads books. NP VP $S \rightarrow NP$ VP	A context-free grammar is a 4-tuple (V, Σ, R, S) , where $\lor V$ is a finite set, called variables (also called nonterminals) $\lor \Sigma$ is a finite set of terminals ; $\Sigma \cap V = \emptyset$ $\trianglerighteq R$ is a finite set of rules , $R \subseteq V \times (\Sigma \cup V)^*$ $\circlearrowright S \in V$ is the start variable
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Denote $uAv \Rightarrow uwv$ (yields) if $A \rightarrow w$ is a rule u derives v ($u \stackrel{*}{\Rightarrow} v$) if u yields v in ≥ 0 steps, i.e., $u = v$ or $u \Rightarrow u_1 \Rightarrow u_2 \dots \Rightarrow u_k \Rightarrow v$
good Noun books NP → Noun student	Language of a grammar: all strings (of terminals) generated from start symbol $L(G) = \{w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w\}$
Sentence: terminals (leaves) left to right	Context-free language: generated by a context-free grammar

Designing Grammars

 $0^{n}1^{n}$

"count" by matching individual symbols, use nonterminals for rest

Match first 0 with last 1 expose the same (but smaller) pattern : recursion (direct or indirect: circular dependencies between variables)

 $S \to 0S1 | \varepsilon$

Balanced Parentheses: first symbol is (and must be matched by) somewhere string in between and string after are balanced

 $S \to (S)S|\varepsilon$

Regular Languages are Context-Free

Can we convert a regular expression to a grammar ?

Grammars have concatenation and union (multiple right-hand sides) Kleene star? $A_star \rightarrow \varepsilon |AA_star$

Can also easily convert a DFA to a CFG:

- make variable R_i for each state q_i
- ▶ for transition $q_i \stackrel{a}{\rightarrow} q_j$, add rule $R_i \rightarrow aR_j$
- for each accept state q_i , add rule $R_i \rightarrow \varepsilon$
- starting state q_0 gives start variable R_0

Ambiguity: If-Then-Else

x=0 y=0

(Backus-Naur-Form: mix of grammar and regex notation) Stmt ::= ExpStmt | IfStmt | WhileStmt | Block ExpStmt ::= expr ; IfStmt ::= if (expr) Stmt else Stmt | if (expr) Stmt WhileStmt ::= while (expr) Stmt Block ::= { Stmt* } Problem: which if is matched by the else ? if (x > 0) if (y > 0) x = 0; else y = 0; x > 0 y > 0 nothing y > 0 y=0

 $x{=}0$ nothing

Designing Grammars

 $L = \{ww^R | w \in \Sigma^*\}$

match first symbol with last symbol

 $S \to \varepsilon |aSa|bSb| \dots \quad \text{for all symbols in } \Sigma$

Other tips: split into sublanguages, use union recognize recursive structures

Ambiguity

Can we have multiple derivations for a parse tree? Yes, order of expanding children ($S \rightarrow AB$, $A \rightarrow a$, $B \rightarrow b$) Not a problem.

Leftmost derivation: replace leftmost variable at each step unique for each parse tree

 $\begin{array}{l} \mbox{Multiple parse trees for one string} = \mbox{ambiguity}. \\ (= \mbox{different rules to derive the same sentence}) \\ \mbox{Is a problem: meaning usually associated with production rule.} \end{array}$

"the girl touches *the boy with the flower*" "the girl *touches* the boy *with the flower*" (propositional phrase part of noun phrase or verb phrase)

Def: A string is derived ${\bf ambiguously}$ if it has more than one leftmost derivation.

Disambiguating If-Then-Else

```
Redesign grammar; distinguish between:

balanced if (with else)

unbalanced if (without else)

Other statements are included in the "balanced" category

Stmt ::= BalancedStmt | UnBalancedIf

BalancedStmt ::= ExpStmt | WhileStmt | Block | BalancedIf

ExpStmt ::= expr ;

WhileStmt ::= while ( expr ) Stmt Block ::= { Stmt* }

BalancedIf ::= if ( expr ) Stmt

UnBalancedIf ::= if ( expr ) Stmt
```

Disambiguating Expressions

$$\label{eq:Expr} \begin{split} \mathsf{Expr} \to \mathsf{Expr} + \mathsf{Expr} \mid \mathsf{Expr} \, * \, \mathsf{Expr} \mid (\ \mathsf{Expr} \) \mid \mathsf{num} \end{split}$$
 Two parse trees for: $\mathsf{num} + \mathsf{num} \, * \, \mathsf{num}$

Disambiguate: introduce one nonterminal for each precedence level

 $\begin{array}{l} {\sf Expr} \rightarrow {\sf Term} \mid {\sf Expr} + {\sf Term} \\ {\sf Term} \rightarrow {\sf Factor} \mid {\sf Term} \ {\sf *} \ {\sf Factor} \\ {\sf Factor} \rightarrow (\ {\sf Expr} \) \mid {\sf num} \end{array}$

Chomsky Normal Form

A CFG is in Chomsky normal form if every rule is of the form

 $\begin{array}{c} A \to BC \\ A \to a \\ S \to \varepsilon \end{array}$

where B, C may not be the start variable

Theorem: Any context-free language can be generated by a CFG in Chomsky Normal Form

Proof: By Construction

Conversion to Chomsky Normal Form

- Add new start variable $S_0 \rightarrow S$, if S appears on RHS.
- Eliminate rules A → ε: for each rule with A on RHS, add a copy eliminating A must do for each occurrence: R → AuA will yield R → uA|Au|u for R → A we add R → ε unless it was previously removed (ensures termination)
- Eliminate unit rules $A \to B$: for any $B \to u$, add $A \to u$, unless this is a previously removed unit rule
- ▶ Eliminate rules with ≥ 3 symbols on RHS: for $SA \rightarrow u_1u_2 \dots u_k$, add rules: $A \rightarrow u_1A_1, A_1 \rightarrow u_2A_2, \dots A_{k-2} \rightarrow u_{k-1}u_k$. If any u_i are terminals, add rule $U_i \rightarrow u_i$

Outlook: Chomsky Hierarchy

Type-3: **regular** grammar: generate regular languages $A \rightarrow a, A \rightarrow \varepsilon, A \rightarrow aB$ (right-regular), OR $A \rightarrow a, A \rightarrow \varepsilon, A \rightarrow Ba$ (left-regular); **don't** combine! recognized by deterministic automata

 $\label{eq:transformation} \begin{array}{ll} \mbox{Type-2: context-free grammar} \\ A \to \gamma & \mbox{left: nonterminal; right: any string} \\ \mbox{recognized by (nondeterministic) pushdown automata} \end{array}$

$\begin{array}{l} \mbox{Type-1: context-sensitive grammar}\\ \alpha A\beta \rightarrow \alpha \gamma \beta \mbox{ with } \gamma \neq \varepsilon\\ (also \ S \rightarrow \varepsilon)\\ \mbox{recognized by linear-bounded nondeterministic Turing machine} \end{array}$

Type-0: recursively enumerable languages $\alpha \rightarrow \beta$ (α contains some nonterminal) recognized by Turing machine