
COMPSCI 501: Formal Language Theory
Lecture 7: Context-Free Grammars

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

6 February 2019

Grammars describe programming languages

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

A.2.3 Statements

(6.8) statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

(6.8.1) labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

(6.8.2) compound-statement:
{ block-item-listopt }

(6.8.2) block-item-list:
block-item
block-item-list block-item

(6.8.2) block-item:
declaration
statement

(6.8.3) expression-statement:
expressionopt ;

(6.8.4) selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

(6.8.5) iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

(6.8.6) jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

472 Language syntax summary §A.2.3

Grammars describe natural language

A good student reads books.

S → NP VP noun phrase + verb phrase
NP → Noun
NP → Det NP determiner: article, adjective
VP → Verb
VP → Verb NP verb + (direct) object
Det → a | good
Noun → books | student
Verb → reads

Terminology

A→ 0A1
A→ B
B → #
I Grammar = set of productions (substitution rules)
I Left-hand side: variable (nonterminal)
I Right-hand side: string of symbols (variables and terminals)
I A start variable

Derivation: apply substitution rules from start variable, until no
variables remain.

A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000B111⇒ 000#111

Or represent as parse tree.

Parse Tree for a Sentence
Hierarchical representation of derivation
Each symbol on RHS linked as child of LHS variable

S

VP

NP

Noun

books

Verb

reads

NP

NP

NP

Noun

student

Det

good

Det

a

A good student reads books.

S → NP VP

NP → Det NP VP → Verb NP

NP → Det NP NP → Noun

NP → Noun

Sentence: terminals (leaves) left to right

Formal Definition

A context-free grammar is a 4-tuple (V,Σ, R, S), where
I V is a finite set, called variables (also called nonterminals)
I Σ is a finite set of terminals; Σ ∩ V = ∅
I R is a finite set of rules, R ⊆ V × (Σ ∪ V)∗

I S ∈ V is the start variable

Denote uAv ⇒ uwv (yields) if A→ w is a rule

u derives v (u ∗⇒ v) if u yields v in ≥ 0 steps, i.e.,
u = v or u⇒ u1 ⇒ u2 . . .⇒ uk ⇒ v

Language of a grammar: all strings (of terminals) generated from
start symbol L(G) = {w ∈ Σ∗ | S ∗⇒ w}
Context-free language: generated by a context-free grammar

Designing Grammars

0n1n

“count” by matching individual symbols, use nonterminals for rest

Match first 0 with last 1
expose the same (but smaller) pattern : recursion
(direct or indirect: circular dependencies between variables)

S → 0S1|ε

Balanced Parentheses:
first symbol is (and must be matched by) somewhere
string in between and string after are balanced

S → (S)S|ε

Designing Grammars

L = {wwR|w ∈ Σ∗}
match first symbol with last symbol

S → ε|aSa|bSb| . . . for all symbols in Σ

Other tips:
split into sublanguages, use union
recognize recursive structures

Regular Languages are Context-Free

Can we convert a regular expression to a grammar ?

Grammars have concatenation
and union (multiple right-hand sides)
Kleene star? A_star → ε|AA_star

Can also easily convert a DFA to a CFG:
I make variable Ri for each state qi

I for transition qi
a→ qj , add rule Ri → aRj

I for each accept state qi, add rule Ri → ε
I starting state q0 gives start variable R0

Ambiguity
Can we have multiple derivations for a parse tree?
Yes, order of expanding children (S → AB, A→ a, B → b)
Not a problem.

Leftmost derivation: replace leftmost variable at each step
unique for each parse tree

Multiple parse trees for one string = ambiguity.
(= different rules to derive the same sentence)
Is a problem: meaning usually associated with production rule.

“the girl touches the boy with the flower”
“the girl touches the boy with the flower”

(propositional phrase part of noun phrase or verb phrase)

Def: A string is derived ambiguously if it has more than one
leftmost derivation.

Ambiguity: If-Then-Else
(Backus-Naur-Form: mix of grammar and regex notation)

Stmt ::= ExpStmt | IfStmt | WhileStmt | Block
ExpStmt ::= expr ;

IfStmt ::= if (expr) Stmt else Stmt | if (expr) Stmt

WhileStmt ::= while (expr) Stmt Block ::= { Stmt∗ }

Problem: which if is matched by the else ?

if (x > 0) if (y > 0) x = 0; else y = 0;

x > 0

nothingy > 0

y=0x=0

x > 0

y=0y > 0

nothingx=0

Disambiguating If-Then-Else

Redesign grammar; distinguish between:
balanced if (with else)
unbalanced if (without else)

Other statements are included in the “balanced” category

Stmt ::= BalancedStmt | UnBalancedIf
BalancedStmt ::= ExpStmt | WhileStmt | Block | BalancedIf
ExpStmt ::= expr ;

WhileStmt ::= while (expr) Stmt Block ::= { Stmt∗ }

BalancedIf ::= if (expr) BalancedStmt else Stmt

UnBalancedIf ::= if (expr) Stmt

Disambiguating Expressions

Expr → Expr + Expr | Expr * Expr | (Expr) | num
Two parse trees for: num + num * num

Disambiguate: introduce one nonterminal for each precedence level

Expr → Term | Expr + Term

Term → Factor | Term * Factor

Factor → (Expr) | num

Chomsky Normal Form

A CFG is in Chomsky normal form if every rule is of the form

A→ BC
A→ a
S → ε

where B,C may not be the start variable

Theorem: Any context-free language can be generated by a CFG in
Chomsky Normal Form

Proof: By Construction

Conversion to Chomsky Normal Form
I Add new start variable S0 → S, if S appears on RHS.

I Eliminate rules A→ ε:
for each rule with A on RHS, add a copy eliminating A
must do for each occurrence:

R→ AuA will yield R→ uA|Au|u
for R→ A we add R→ ε unless it was previously removed

(ensures termination)

I Eliminate unit rules A→ B:
for any B → u, add A→ u, unless this is a previously

removed unit rule

I Eliminate rules with ≥ 3 symbols on RHS:
for SA→ u1u2 . . . uk, add rules:
A→ u1A1, A1 → u2A2, . . .Ak−2 → uk−1uk.

If any ui are terminals, add rule Ui → ui

Outlook: Chomsky Hierarchy
Type-3: regular grammar: generate regular languages
A→ a, A→ ε, A→ aB (right-regular), OR
A→ a, A→ ε, A→ Ba (left-regular); don’t combine!

recognized by deterministic automata

Type-2: context-free grammar
A→ γ left: nonterminal; right: any string

recognized by (nondeterministic) pushdown automata

Type-1: context-sensitive grammar
αAβ → αγβ with γ 6= ε
(also S → ε)

recognized by linear-bounded nondeterministic Turing machine

Type-0: recursively enumerable languages
α→ β (α contains some nonterminal)

recognized by Turing machine

