

What does L-(in)distinguishability tell us ?	Myhill - Nerode Theorem
Can check if a <i>particular</i> DFA is suitable for recognizing a language Let L be any language and M be any DFA. If for two L -distinguishable strings u and v , we have $\delta^*(q_0, u) = \delta^*(q_0, v)$, then $L(M) \neq L$. If u and v are distinguished by L , then there is some string w so uw is accepted and vw is not (or the reverse). But $\delta^*(q_0, u) = \delta^*(q_0, v) \Rightarrow \delta^*(q_0, uw) = \delta^*(q_0, vw)$, and the latter state can not be both accepting and not accepting (q.e.d.).	 Define the index of a language L the maximum number of strings so that any two are pairwise distinguishable by L. Theorem: L is recognized by a DFA with k states iff it has index at most k. If L is recognized by a DFA with k states, L has index at most k If L has a finite index k, it is recognized by a DFA with k states (and this is the minimal DFA) Corollary: If L has infinite index, it is not regular
Examples: languages with infinite index	Example: Balanced Parentheses
$\{0^{n}1^{n} \mid n \ge 0\}$ Choose set of strings $\{0^{n} \mid n \ge 0\}$ 0^{i} distinguishable from 0^{j} $(i \ne j)$: $0^{i}1^{i}$ accepted, $0^{j}1^{i}$ not accepted <i>L</i> -equivalence is defined over <i>all strings</i> in Σ^{*} For pumping lemma, we choose string <i>from language</i> . For distinguishability, we choose <i>any family of strings</i> .	$\Sigma = \{L, R\}$ Language of strings with equal number of L and R , no prefix has more R than L . L^i distinguishable from L^j $(i \neq j)$: $L^i R^i$ accepted, $L^j R^i$ not accepted
Proof of Myhill-Nerode (1) If L is recognized by a DFA with k states, L has index at most k Proof: by contradiction. Assume L has index greater than k, so at least $k + 1$ strings are pairwise L-distinguishable. Then by the pigeonhole principle, there are two strings x and y tht take the DFA to the same state: $\delta^*(q_0, x) = \delta^*(q_0, y)$. Then, for any suffix, $\delta^*(q_0, xw) = \delta^*(q_0, yw)$, so both strings are either accepted or not $\Rightarrow x$ and y are not distinguishable (contradiction)	Proof of Myhill-Nerode (2) If L has a finite index k, it is recognized by a DFA with k states We construct the DFA M. Consider a set $\{s_1, s_2, \ldots s_k\}$ of L-distinguishable strings. We'll have one state q_i for each string s_i . For any string s_i and $a \in \Sigma$, $s_i a$ must be L-equivalent to some s_j : $s_i a \equiv_L s_j$ (else we'd have one more equivalence class, index > k). Choose $\delta(q_i, a) = q_j$. Take as initial state the q_i with $s_i \equiv_L \varepsilon$. Let $F = \{q_i \mid s_i \in L\}$ (the states for strings in L) Are we done? Need to prove that for all w , $\delta^*(q_0, w) = q_i$ such that $w \equiv_L s_i$ by induction over string length

Example: Prime Lengths	Minimizing DFAs by Partition Refinement
$\Sigma = \{1\}, \text{ language: } \{1^p \mid pisprime\}$ Choose any two strings 1^i and 1^j , $i < j$, and a prime $p > i, j$. For any suffix 1^k , lengths of $1^i 1^k$ and $1^j 1^k$ differ by $j - i$. Choose sequence of strings with lengths $p, p + (j - i), p + 2(j - i), \dots p + p(j - i)$ Consecutive strings have length difference $j - i$, so are obtained from 1^i and 1^j with same suffix. p is prime, but $p + p(j - i)$ is not (divisible by p). Thus, there must be a consecutive pair (prime, not prime), and that pair is distinguishable.	Start by partitioning states in $(F, Q \setminus F)$ (accept or not) If for all partitions X , all states $q, r \in X$ and all symbols $a \in \Sigma$, we have $\delta(q, a)$ and $\delta(r, a)$ in the same partition, stop. (states in partition are not distinguishable) Otherwise, refine partition X and repeat. Example: binary strings, accept if divisible by 6