
COMPSCI 501: Formal Language Theory
Lecture 6: Myhill-Nerode Theorem

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

4 February, 2019

Regular and Nonregular Languages

I We’ve defined regular languages as accepted by automata

I Then, equivalently, using language closure properties
(regular expression: union, concatenation, star)

I A necessary condition for regular languages: Pumping Lemma
prove by contradiction that a language is not regular

I A necessary and sufficient condition?

A nonregular language that can be pumped

Consider Σ = {a, b, c} and
L = {canbn|n ≥ 1} ∪ {ckw|k 6= 1, w ∈ {a, b}∗}
This is the disjoint union of two parts:
L1 = {canbn|n ≥ 1} is not regular
L2 = {ckw|k 6= 1, w ∈ {a, b}∗} is regular

Pumping L1 (up or down with c) gives a string in L2

L2 is regular so it can be pumped:
with the first symbol, if it is not c
with cc, if it starts with cc

DFA: State = Prefix
Example: binary strings that do not end with same two symbols

i

0

1

00

11

0

1

0

1

1

0

0

1

1

0

State i reached by ε, 0 reached by 0 (also 10, 110, . . .), etc.

If two strings reach the same state, no suffix will further distinguish
them.

δ∗(q0, u) = δ∗(q0, v) = q ⇒ δ∗(q0, uw) = δ∗(q0, vw) = δ∗(q, w) for
any w where δ∗ is the transition function for strings.

L-distinguishable strings

Let x, y ∈ Σ∗ be any strings and L be any language.

We say that x and y are distinguishable by L if there exists a
string z such that exactly one of the strings xz and yz is in L (the
other one is not).

Otherwise, if for all z ∈ Σ∗, xz ∈ L⇔ yz ∈ L, we say that x and y
are indistinguishable by L, and write x ≡L y.

L-indistinguishability is an equivalence relation

because L-indistinguishability is defined as an equivalence
I Reflexive: clearly, xw = xw for any w (same string)

I Symmetric: if xw ∈ L⇔ yw ∈ L then yw ∈ L⇔ xw ∈ L

I Transitive: if xw ∈ L⇔ yw ∈ L and yw ∈ L⇔ zw ∈ L then
xw ∈ L⇔ zw ∈ L

What does L-(in)distinguishability tell us ?

Can check if a particular DFA is suitable for recognizing a language

Let L be any language and M be any DFA. If for two
L-distinguishable strings u and v, we have δ∗(q0, u) = δ∗(q0, v),
then L(M) 6= L.

If u and v are distinguished by L, then there is some string w so uw
is accepted and vw is not (or the reverse).

But δ∗(q0, u) = δ∗(q0, v)⇒ δ∗(q0, uw) = δ∗(q0, vw), and the latter
state can not be both accepting and not accepting (q.e.d.).

Myhill - Nerode Theorem

Define the index of a language L the maximum number of strings
so that any two are pairwise distinguishable by L.

Theorem: L is recognized by a DFA with k states iff it has index
at most k.

I If L is recognized by a DFA with k states, L has index at most k

I If L has a finite index k, it is recognized by a DFA with k states
(and this is the minimal DFA)

Corollary: If L has infinite index, it is not regular

Examples: languages with infinite index

{0n1n | n ≥ 0}

Choose set of strings {0n | n ≥ 0}
0i distinguishable from 0j (i 6= j):

0i1i accepted, 0j1i not accepted

L-equivalence is defined over all strings in Σ∗

For pumping lemma, we choose string from language.
For distinguishability, we choose any family of strings.

Example: Balanced Parentheses

Σ = {L,R}
Language of strings with equal number of L and R, no prefix has
more R than L.

Li distinguishable from Lj (i 6= j):
LiRi accepted, LjRi not accepted

Proof of Myhill-Nerode (1)

I If L is recognized by a DFA with k states, L has index at most k

Proof: by contradiction.

Assume L has index greater than k, so at least k + 1 strings are
pairwise L-distinguishable.

Then by the pigeonhole principle, there are two strings x and y tht
take the DFA to the same state: δ∗(q0, x) = δ∗(q0, y).

Then, for any suffix, δ∗(q0, xw) = δ∗(q0, yw), so both strings are
either accepted or not
⇒ x and y are not distinguishable (contradiction)

Proof of Myhill-Nerode (2)

I If L has a finite index k, it is recognized by a DFA with k states

We construct the DFA M . Consider a set {s1, s2, . . . sk} of
L-distinguishable strings. We’ll have one state qi for each string si.

For any string si and a ∈ Σ, sia must be L-equivalent to some sj :
sia ≡L sj (else we’d have one more equivalence class, index > k).

Choose δ(qi, a) = qj .

Take as initial state the qi with si ≡L ε.

Let F = {qi | si ∈ L} (the states for strings in L)

Are we done?
Need to prove that for all w, δ∗(q0, w) = qi such that w ≡L si

by induction over string length

Example: Prime Lengths

Σ = {1}, language: {1p | pisprime}
Choose any two strings 1i and 1j , i < j, and a prime p > i, j.

For any suffix 1k, lengths of 1i1k and 1j1k differ by j − i.
Choose sequence of strings with lengths
p, p+ (j − i), p+ 2(j − i), . . . p+ p(j − i)
Consecutive strings have length difference j − i, so are obtained
from 1i and 1j with same suffix.

p is prime, but p+ p(j − i) is not (divisible by p).
Thus, there must be a consecutive pair (prime, not prime), and that
pair is distinguishable.

Minimizing DFAs by Partition Refinement

Start by partitioning states in (F,Q \ F) (accept or not)

If for all partitions X, all states q, r ∈ X and all symbols a ∈ Σ, we
have δ(q, a) and δ(r, a) in the same partition, stop.
(states in partition are not distinguishable)

Otherwise, refine partition X and repeat.

Example: binary strings, accept if divisible by 6

