COMPSCI 501: Formal Language Theory

Lecture 4: Regular Expressions

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

January 30, 2019

Regular Expressions

We've seen regular languages are closed under

» Union
» Concatenation
» Kleene Star

Starting from automata for the languages, we've constructed
automata that correspond to these operations.

We can also use notation that directly describes and performs
operations on languages.

Definition of Regular Expressions

R is a regular expression if it is

'S

=0 Q

>
>
>

—~

Ry U Ry) where Ry and Ry are regular expressions
sometimes denoted Ry + Ry or R1|Rq

(R1 o Ry) where Ry and Ry are regular expressions
sometimes written simply RjRo

(R}) where Ry is a regular expression

v

v

inductive definition (by structural induction)

Some definitions have only two base cases; ¢ = ()* is derived

More shorthands: RT = RR*

, for some symbol a € & represents {a}
represents {¢}

Examples of Regular Expressions

Consider alphabet ¥ = {0,1}. Write X for 0U 1.

Single 1: 0*10*

At least a 1: ¥*1¥*

Length =1 mod 3: ¥(XXX)*

Every 0 followed by a 1: 1*(017)* or (1/01)*

Contains no 00: like above, but can end in 0: (1/01)*(0 + ¢)
(0*1)*: does not end in 0

Real numbers with optional sign: (+| — |¢)(D*.D|D*.D*)

(must include decimal point, otherwise int)

Used in lexical analysis (compiler)
Recognize email addresses, URLs, etc.

Regular Expression ldentities

There are multiple regular expressions describing a given language.

Basic Ildentities:
RUD=R
Re=¢R=R

Others:
(R*)* — R*
cURR*=R*
etc.

Equivalence with Finite Automata
A language is regular if and only if a regular expression describes it.
(Kleene's Theorem)

Proof: by construction
(1) Construct automaton (NFA) from regular expression
(2) Construct regular expression for automaton

For (1), we start with automata for the three base cases

0 €

no accepting state initial state is accepting
a

accepts a

We can apply the construction discussed for NFAs.

Closure under Union

Add new initial state with e-transitions to both initial states

N

leﬁ /O
©) O o
0g©) 0g©
. O e
OO@ OO@

FIGURE 1.46
Construction of an NFA N to recognize A; U Ay

Closure under Concatenation
Add e-transitions from all accept states of Ny to initial state of Ny

N N,

° oo ©O

o < ©
o o

o o o ©

FIGURE 1.48
Construction of N to recognize A; o Ay

Closure under Kleene Star

Add e-transitions from all accept states to initial state, and
new initial (and accepting) state with e-transitions to original one.

N
Ny

©
*OOO©

FIGURE 1.50
Construction of N to recognize A*

Alternative Construction

We can also maintain these invariants in the construction:

» one initial and (at most) one accepting state
» initial state has no incoming transitions
> accepting state has no outgoing transitions

attempting to reduce the number of e-transitions

Concatenation Rj Ro: merge Ry's accept state and Ro's initial state

RORCRC

Alternative Constructions (cont'd.)
Union Ry U Ry: merge initial and final states

Kleene Star: merge initial and accept state
create new initial and accept state with e-transitions to loop

Correctness proof: invariants are maintained

Converting Automata to Regular Expressions

Generalized Nondeterministic Finite Automaton (GNFA)

FIGURE 1.61
A generalized nondeterministic finite automaton

» transitions labeled with regular expressions
» single initial state, no incoming transitions
> single accept state (not initial), no outgoing transitions

textbook: transitions between all other states (labeled () if needed)

Eliminating States

Q (Ry) (Ro)* (Rs) U (Ry) Q
Ry

before after

FIGURE 1.63
Constructing an equivalent GNFA with one fewer state

Successively eliminate all states except initial and final

When eliminating state g, consider all paths ¢; — q,ip — q;
Augment transition ¢; By g with regular expression R1R5R;3
Finally, only initial and accept states with overall regex left.

Correctness proof: by induction over number of states.

Example: Strings with no aba

Introduce new accepting state 4
Eliminate 2, then 3
R = (bla™bb)*(a*|a™b)

Determining membership

Given a regular expression R and a string u, find whether u € R
Construct automaton for R (“compile” regex), run on u

What is the complexity? worst-case exponential in size of R
DFA may be exponential in size of NFA
or, if we backtrack in NFA, can spend exponential time

ReDoS (denial of service attack): if R controlled by user

> nested repetitions (T applied to complex expression)
> a match is also a suffix of another match, e.g. aa...azx € (™) ?

= check libraries for evil regexes
do lazy construction of DFA if regex user-supplied

Derivative of Regular Expression

(Brzozowski, 1964)

Q: Given a language L and a symbol a, what are the suffixes of
strings in L that start with a ?

O L={v|avelL}
Example: 0,a™b = a*b, dpa*b=¢

How could we use the derivative?

» check string membership: take derivative for successive symbols
ai,ag, ... an, check if result accepts

» directly construct DFA from regular expression!

Derivative Rules

9.0=10
O =10
Jua =€
Ob=10

Oa(R+S) = 0,R+ 9,5

9a(RS) = (9.R)S ife¢ R
9a(RS) = (0,R)S + 0.5 ifc€R

0,R* = 0,R- R*

Constructing DFA with Derivatives

Every distinct regular expression obtained is a state.

A state is accepting if regex contains ¢.

Construct DFA for (a*b)*

04(a*b)* = 94(a*d) - (a*b)* = a*b(a*b)*
Op(a*b)* = Op(a*d) - (a*b)* = e(a*b)* = (a*b)*

04(a*b(a*b)*) = 04(a*b)(a*b)* = a*b(a*b)*
Op(a*b(a*b)*) = Op(a*b)(a*b)* = (a*b)*
b a
a

