	Regular Expressions
COMPSCI 501: Formal Language Theory Lecture 4: Regular Expressions Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	 We've seen regular languages are closed under Union Concatenation Kleene Star Starting from automata for the languages, we've constructed automata that correspond to these operations. We can also use notation that directly describes and performs operations on languages.
$\begin{array}{l} \hline \textbf{Definition of Regular Expressions} \\ R \text{ is a regular expression if it is} \\ \bullet a, \text{ for some symbol } a \in \Sigma & \text{represents } \{a\} \\ \bullet \varepsilon & \text{represents } \{\varepsilon\} \\ \bullet \emptyset \\ \bullet & (R_1 \cup R_2) \text{ where } R_1 \text{ and } R_2 \text{ are regular expressions} \\ \text{ sometimes denoted } R_1 + R_2 \text{ or } R_1 R_2 \\ \bullet & (R_1 \circ R_2) \text{ where } R_1 \text{ and } R_2 \text{ are regular expressions} \\ \text{ sometimes written simply } R_1 R_2 \\ \bullet & (R_1^*) \text{ where } R_1 \text{ is a regular expression} \\ & \text{inductive definition (by structural induction)} \\ \hline \\ \text{Some definitions have only two base cases; } \varepsilon = \emptyset^* \text{ is derived} \\ \text{More shorthands: } R^+ = RR^* \end{array}$	Examples of Regular ExpressionsConsider alphabet $\Sigma = \{0, 1\}$. Write Σ for $0 \cup 1$.Single 1: 0^*10^* At least a 1: $\Sigma^*1\Sigma^*$ Length $\equiv 1 \mod 3$: $\Sigma(\Sigma\Sigma\Sigma)^*$ Every 0 followed by a 1: $1^*(01^+)^*$ or $(1 01)^*$ Contains no 00: like above, but can end in 0: $(1 01)^*(0 + \varepsilon)$ ($0^*1)^*$: does not end in 0Real numbers with optional sign: $(+ - \varepsilon)(D^*.D^+ D^+.D^*)$ (must include decimal point, otherwise int)Used in lexical analysis (compiler) Recognize email addresses, URLs, etc.
Regular Expression Identities There are multiple regular expressions describing a given language. Basic Identities: $R \cup \emptyset = R$ $R \varepsilon = \varepsilon R = R$ Others: $(R^*)^* = R^*$ $\varepsilon \cup RR^* = R^*$ etc	Equivalence with Finite Automata A language is regular if and only if a regular expression describes it. (Kleene's Theorem) Proof: by construction (1) Construct automaton (NFA) from regular expression (2) Construct regular expression for automaton For (1), we start with automata for the three base cases \emptyset ε \longrightarrow \cdots no accepting state initial state is accepting
	$ \xrightarrow{a} \underbrace{accepts \ a} $ We can apply the construction discussed for NFAs.

