
COMPSCI 501: Formal Language Theory
Lecture 4: Regular Expressions

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

January 30, 2019

Regular Expressions

We’ve seen regular languages are closed under
I Union
I Concatenation
I Kleene Star

Starting from automata for the languages, we’ve constructed
automata that correspond to these operations.

We can also use notation that directly describes and performs
operations on languages.

Definition of Regular Expressions

R is a regular expression if it is
I a, for some symbol a ∈ Σ represents {a}
I ε represents {ε}
I ∅
I (R1 ∪R2) where R1 and R2 are regular expressions

sometimes denoted R1 + R2 or R1|R2
I (R1 ◦R2) where R1 and R2 are regular expressions

sometimes written simply R1R2
I (R∗

1) where R1 is a regular expression

inductive definition (by structural induction)

Some definitions have only two base cases; ε = ∅∗ is derived

More shorthands: R+ = RR∗

Examples of Regular Expressions

Consider alphabet Σ = {0, 1}. Write Σ for 0 ∪ 1.

Single 1: 0∗10∗

At least a 1: Σ∗1Σ∗

Length ≡ 1 mod 3: Σ(ΣΣΣ)∗

Every 0 followed by a 1: 1∗(01+)∗ or (1|01)∗

Contains no 00: like above, but can end in 0: (1|01)∗(0 + ε)
(0∗1)∗: does not end in 0

Real numbers with optional sign: (+| − |ε)(D∗.D+|D+.D∗)
(must include decimal point, otherwise int)

Used in lexical analysis (compiler)
Recognize email addresses, URLs, etc.

Regular Expression Identities

There are multiple regular expressions describing a given language.

Basic Identities:
R ∪ ∅ = R
Rε = εR = R

Others:
(R∗)∗ = R∗

ε ∪RR∗ = R∗

etc.

Equivalence with Finite Automata
A language is regular if and only if a regular expression describes it.
(Kleene’s Theorem)

Proof: by construction
(1) Construct automaton (NFA) from regular expression
(2) Construct regular expression for automaton

For (1), we start with automata for the three base cases
∅

no accepting state

ε

initial state is accepting
a

a

accepts a

We can apply the construction discussed for NFAs.

Closure under Union
Add new initial state with ε-transitions to both initial states

1.2 NONDETERMINISM 59

technique of nondeterminism. Reviewing the first proof, appearing on page 45,
may be worthwhile to see how much easier and more intuitive the new proof is.

THEOREM 1.45

The class of regular languages is closed under the union operation.

PROOF IDEA We have regular languages A1 and A2 and want to prove that
A1 ∪A2 is regular. The idea is to take two NFAs, N1 and N2 for A1 and A2, and
combine them into one new NFA, N .

Machine N must accept its input if either N1 or N2 accepts this input. The
new machine has a new start state that branches to the start states of the old ma-
chines with ε arrows. In this way, the new machine nondeterministically guesses
which of the two machines accepts the input. If one of them accepts the input,
N will accept it, too.

We represent this construction in the following figure. On the left, we in-
dicate the start and accept states of machines N1 and N2 with large circles and
some additional states with small circles. On the right, we show how to combine
N1 and N2 into N by adding additional transition arrows.

FIGURE 1.46

Construction of an NFA N to recognize A1 ∪ A2

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Closure under Concatenation
Add ε-transitions from all accept states of N1 to initial state of N21.2 NONDETERMINISM 61

FIGURE 1.48

Construction of N to recognize A1 ◦A2

PROOF

Let N1 = (Q1, Σ, δ1, q1, F1) recognize A1, and
N2 = (Q2, Σ, δ2, q2, F2) recognize A2.

Construct N = (Q, Σ, δ, q1, F2) to recognize A1 ◦A2.

1. Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.

2. The state q1 is the same as the start state of N1.

3. The accept states F2 are the same as the accept states of N2.

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 and q ̸∈ F1

δ1(q, a) q ∈ F1 and a ̸= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Closure under Kleene Star

Add ε-transitions from all accept states to initial state, and
new initial (and accepting) state with ε-transitions to original one.

62 CHAPTER 1 / REGULAR LANGUAGES

THEOREM 1.49

The class of regular languages is closed under the star operation.

PROOF IDEA We have a regular language A1 and want to prove that A∗
1 also

is regular. We take an NFA N1 for A1 and modify it to recognize A∗
1, as shown in

the following figure. The resulting NFA N will accept its input whenever it can
be broken into several pieces and N1 accepts each piece.

We can construct N like N1 with additional ε arrows returning to the start
state from the accept states. This way, when processing gets to the end of a piece
that N1 accepts, the machine N has the option of jumping back to the start state
to try to read another piece that N1 accepts. In addition, we must modify N
so that it accepts ε, which always is a member of A∗

1. One (slightly bad) idea is
simply to add the start state to the set of accept states. This approach certainly
adds ε to the recognized language, but it may also add other, undesired strings.
Exercise 1.15 asks for an example of the failure of this idea. The way to fix it is
to add a new start state, which also is an accept state, and which has an ε arrow
to the old start state. This solution has the desired effect of adding ε to the
language without adding anything else.

FIGURE 1.50

Construction of N to recognize A∗

PROOF Let N1 = (Q1, Σ, δ1, q1, F1) recognize A1.
Construct N = (Q, Σ, δ, q0, F) to recognize A∗

1.

1. Q = {q0} ∪Q1.
The states of N are the states of N1 plus a new start state.

2. The state q0 is the new start state.

3. F = {q0} ∪ F1.
The accept states are the old accept states plus the new start state.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Alternative Construction

We can also maintain these invariants in the construction:
I one initial and (at most) one accepting state
I initial state has no incoming transitions
I accepting state has no outgoing transitions

attempting to reduce the number of ε-transitions

Concatenation R1R2: merge R1’s accept state and R2’s initial state

si1 s12 sf2

Alternative Constructions (cont’d.)
Union R1 ∪R2: merge initial and final states

si12 sf12

Kleene Star: merge initial and accept state
create new initial and accept state with ε-transitions to loop

sif
ε ε

Correctness proof: invariants are maintained

Converting Automata to Regular Expressions
Generalized Nondeterministic Finite Automaton (GNFA)

70 CHAPTER 1 / REGULAR LANGUAGES

We break this procedure into two parts, using a new type of finite automaton
called a generalized nondeterministic finite automaton, GNFA. First we show
how to convert DFAs into GNFAs, and then GNFAs into regular expressions.

Generalized nondeterministic finite automata are simply nondeterministic fi-
nite automata wherein the transition arrows may have any regular expressions as
labels, instead of only members of the alphabet or ε. The GNFA reads blocks of
symbols from the input, not necessarily just one symbol at a time as in an ordi-
nary NFA. The GNFA moves along a transition arrow connecting two states by
reading a block of symbols from the input, which themselves constitute a string
described by the regular expression on that arrow. A GNFA is nondeterministic
and so may have several different ways to process the same input string. It ac-
cepts its input if its processing can cause the GNFA to be in an accept state at the
end of the input. The following figure presents an example of a GNFA.

FIGURE 1.61

A generalized nondeterministic finite automaton

For convenience, we require that GNFAs always have a special form that meets
the following conditions.

• The start state has transition arrows going to every other state but no arrows
coming in from any other state.

• There is only a single accept state, and it has arrows coming in from every
other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

• Except for the start and accept states, one arrow goes from every state to
every other state and also from each state to itself.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I transitions labeled with regular expressions
I single initial state, no incoming transitions
I single accept state (not initial), no outgoing transitions

textbook: transitions between all other states (labeled ∅ if needed)

Eliminating States

72 CHAPTER 1 / REGULAR LANGUAGES

take the machine from qi to qj either directly or via qrip. We illustrate this
approach in Figure 1.63.

FIGURE 1.63

Constructing an equivalent GNFA with one fewer state

In the old machine, if

1. qi goes to qrip with an arrow labeled R1,

2. qrip goes to itself with an arrow labeled R2,

3. qrip goes to qj with an arrow labeled R3, and

4. qi goes to qj with an arrow labeled R4,

then in the new machine, the arrow from qi to qj gets the label

(R1)(R2)
∗(R3) ∪ (R4).

We make this change for each arrow going from any state qi to any state qj ,
including the case where qi = qj . The new machine recognizes the original
language.

PROOF Let’s now carry out this idea formally. First, to facilitate the proof,
we formally define the new type of automaton introduced. A GNFA is similar
to a nondeterministic finite automaton except for the transition function, which
has the form

δ :
(
Q− {qaccept}

)
×

(
Q− {qstart}

)
−→R.

The symbol R is the collection of all regular expressions over the alphabet Σ,
and qstart and qaccept are the start and accept states. If δ(qi, qj) = R, the arrow
from state qi to state qj has the regular expression R as its label. The domain
of the transition function is

(
Q − {qaccept}

)
×

(
Q − {qstart}

)
because an arrow

connects every state to every other state, except that no arrows are coming from
qaccept or going to qstart.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Successively eliminate all states except initial and final

When eliminating state qrip, consider all paths qi → qrip → qj

Augment transition qi
R4→ qj with regular expression R1R∗

2R3

Finally, only initial and accept states with overall regex left.

Correctness proof: by induction over number of states.

Example: Strings with no aba

1 2

3

b

a

a

bb

1 2

34

b

a

ε

a

bε
b

ε

Introduce new accepting state 4

Eliminate 2, then 3

R = (b|a+bb)∗(a∗|a+b)

Determining membership

Given a regular expression R and a string u, find whether u ∈ R

Construct automaton for R (“compile” regex), run on u

What is the complexity? worst-case exponential in size of R
DFA may be exponential in size of NFA
or, if we backtrack in NFA, can spend exponential time

ReDoS (denial of service attack): if R controlled by user
I nested repetitions (+ applied to complex expression)
I a match is also a suffix of another match, e.g. aa...ax ∈ (a+)+ ?

⇒ check libraries for evil regexes
do lazy construction of DFA if regex user-supplied

Derivative of Regular Expression

(Brzozowski, 1964)

Q: Given a language L and a symbol a, what are the suffixes of
strings in L that start with a ?

∂aL = {v | av ∈ L}

Example: ∂aa∗b = a∗b, ∂ba
∗b = ε

How could we use the derivative?
I check string membership: take derivative for successive symbols

a1, a2, . . . an, check if result accepts ε

I directly construct DFA from regular expression!

Derivative Rules

∂a∅ = ∅
∂aε = ∅
∂aa = ε
∂ab = ∅
∂a(R + S) = ∂aR + ∂aS

∂a(RS) = (∂aR)S if ε /∈ R
∂a(RS) = (∂aR)S + ∂aS if ε ∈ R

∂aR∗ = ∂aR ·R∗

Constructing DFA with Derivatives

Every distinct regular expression obtained is a state.

A state is accepting if regex contains ε.

Construct DFA for (a∗b)∗

∂a(a∗b)∗ = ∂a(a∗b) · (a∗b)∗ = a∗b(a∗b)∗

∂b(a∗b)∗ = ∂b(a∗b) · (a∗b)∗ = ε(a∗b)∗ = (a∗b)∗

∂a(a∗b(a∗b)∗) = ∂a(a∗b)(a∗b)∗ = a∗b(a∗b)∗

∂b(a∗b(a∗b)∗) = ∂b(a∗b)(a∗b)∗ = (a∗b)∗

b a

b
a

a

b

