	Automata and Regular Languages
COMPSCI 501: Formal Language Theory Lecture 39: Review Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	Interesting questions (accept, empty, equivalence) decidable Useful argument: convert to DFA, minize \implies unique form. Representative problem: ALL_{NFA} $\overline{ALL_{NFA}}$: in PSPACE nondeterministically guess rejected string simulate, NFA in $\leq Q $ states at each step (PSPACE) Does this imply \in NP? No. (unknown whether NP, or coNP) Useful idea: cross-product (shuffle, suffix languages), also use for PDAs.
Context Free Grammars and Pushdown Automata Chomsky Normal Form: simplify, bounds on derivation complexity $A \rightarrow BC$, $A \rightarrow a$, $(S \rightarrow \varepsilon)$ any derivation has $2 w - 1$ steps e.g., decide A_{CFG} , try all derivations from S $A_{CFG} \in P$, dynamic programming (all terminals generating any substring) CFG / PDA Equivalence proof: \Rightarrow : nondet. choose rule, push nonterminals, match/pop terminals \Leftarrow : nonterminal for each PDA state pair Closure properties: yes: union, concatenation, Kleene star no: intersection, complement (only DCFL)	Pumping LemmasRegular: any language string with $ s \ge p$ can be divided into three pieces, $s = xyz$, with the conditions1. $xy^iz \in A$ for any $i \ge 0$ 2. $ y > 0$ 3. $ xy \le p$ Context-Free: any language string with $ s \ge p$ can be divided into five pieces, $s = uvxyz$, with the conditions $\setminus 1$. $uv^ixy^iz \in A$ for any $i \ge 0$ 2. $ vy > 0$ 3. $ vxy \le p$ Pump up or down (both useful)Unidirectional: if pumped string not in language, is not regular/context-free there are other languages for which pumping holds e.g., $ca^nb^n \bigcup c^k(a+b)^*$, $k \ne 1$ nonregular, pumpable
Turing Machines, Recognizability, Decidability	Problems for Recognizers
A Turing recognizable (by M_1) and \overline{A} Turing recognizable (by M_2) $\implies A$ decidable run M_1 and M_2 in lockstep, see which halts first Enumerating Turing-recognizable \Leftrightarrow (recursively) enumerable run for k steps on $s_1, s_2, \dots s_k$ (dovetailing) Decidable \Leftrightarrow enumerable in lexicographical order Important : carefully consider language of given problem: Is is $\{\langle M, w \rangle \mid\}$ or just $\{\langle M \rangle \mid\}$? If the latter, can't say "run M on w and" (what is the input w ?)	Acceptance: $A_M = \{\langle M, w \rangle M \text{ is a machine that accepts } w\}$ Emptiness $E_M = \{\langle M \rangle M \text{ is a machine with } L(M) = \emptyset\}$ Universality $ALL_M = \{\langle M \rangle M \text{ is a machine with } L(M) = \Sigma^*\}$ Equivalence $EQ_M = \{\langle A, B \rangle A, B \text{ are machines with } L(A) = L(B)\}$ All decidable for DFA/NFA/REX (convert to minimized DFA) A_{CFG} , E_{CFG} decidable, ALL_{CFG} , EQ_{CFG} not decidable A_{TM} , $HALT_{TM}$, E_{TM} , etc. not decidable

Proving Undecidability of a Language L	More General: Rice's Theorem
Diagonalization (directly) e.g., for proving A_{TM} undecidable Reducing from A_{TM} . Example: E_{TM} . Assume decider D for E_{TM} , build decider for A_{TM} . Construct a TM M_1 that will either have an empty language or not, depending on whether M accepts w . won't ever run M_1 , but feed as input to D On input x : if $x \neq w$, reject otherwise, run A on w (= x), accept if A does Thus, $L(M_1) = \{w\}$ if A accepts w , \emptyset otherwise Could use D to decide A_{TM} .	Let P be a nontrivial property of a Turing machine: A language property, $L(M_1) = L(M_2) \rightarrow (P(M_1) \leftrightarrow P(M_2))$ At least one TM has this property. Then P is undecidable. Let MP a Turing machine with that property. (Assume language nonempty, else pick complement). Construct a decider for A_{TM} . On input $\langle M, w \rangle$, construct TM C as follows: on input $\langle M, w \rangle$, construct TM C as follows: on input x : run M on w (reject or run forever like M) if accept, run MP on x, return result C has same language as MP (if M accepts w) or empty language. \implies could use decider for P to decide A_{TM} .
Proving a Language is not Turing-recognizable	Reduction via Computation Histories
Similar idea, but reduce from $\overline{A_{TM}}$. EQ_{TM} not Turing-recognizable nor co-Turing-recognizable. On input $\langle M, w \rangle$, construct two machines: M_{\emptyset} : rejects any input / M_{all} : accepts any input M_w : accept all/none, according to run of M on w M_{\emptyset} not EQ M_w iff M accepts w : $A_{TM} \leq_{m} \overline{EQ_{TM}}$, $\overline{A_{TM}} \leq_{m} EQ_{TM}$ M_{all} EQ M_w iff M accepts w : $A_{TM} \leq_{m} EQ_{TM}$, $\overline{A_{TM}} \leq_{m} EQ_{TM}$ Mapping reduction: $f(\langle M, w \rangle) = \langle M_{\emptyset}, M_w \rangle$ or $\langle M_{all}, M_w \rangle$	 Linear Bounded Automata: A_{LBA} decidable (finite number of configurations), but E_{LBA} is not. Set of accepting TM computation histories of a TM checkable by an LBA. Another use: all strings that are <i>not</i> accepting computation histories on a string w. can generate with a PDA / CFG ⇒ ALL_{CFG}= undecidable (deciding ≠ Σ* ⇔ deciding A_{TM}) can generate via extended regular expressions use to prove: equivalence of extended regular expressions with exponentiation is EXPSPACE-hard.
Mapping ReducibilityDef. A function $f: \Sigma^* \to \Sigma^*$ is a computable function if some Turing machine M , on input w , halts with just $f(w)$ on tape.Def. A language A is mapping reducible to language B (written $A \leq_m B$) if there is a computable function $f: \Sigma^* \to \Sigma^*$ where for every $w, w \in A \Leftrightarrow f(w) \in B$ \overbrace{f} <td>Using Mapping Reducibility Decidability If $A \leq_m B$ and B is decidable, then A is decidable. If $A \leq_m B$ and A is undecidable then B is undecidable. Turing-recognizability If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable. If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable.</td>	Using Mapping Reducibility Decidability If $A \leq_m B$ and B is decidable, then A is decidable. If $A \leq_m B$ and A is undecidable then B is undecidable. Turing-recognizability If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable. If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable.

Recursion Theorem Descriptive Complexity The **minimal description** of a binary string x is the shortest string A TM can obtain and execute its own description. $\langle M, w \rangle$ where M halts on input w with x on tape. Use: e.g., in proofs by contradiction (do something else than The descriptive complexity (Kolmogorov complexity) is the length description says) of the minimal description: K(x) = |d(x)|e.g. assume A_{TM} has a decider HConstruct a TM *B*: Def.: A string x is c-compressible if $K(x) \leq |x| - c$. On input w: **incompressible** = not 1-compressible. 1. Obtain own description $\langle B \rangle$ Most strings are close to incompressible. 2. Run H on input $\langle B, w \rangle$ 3. Do the opposite of H (accept/reject) Incompressible strings are undecidable. Can only enumerate a finite subset. Polynomial Verifiers and NP **NP-Completeness** Def. A verifier for a language A is an algorithm V, where Def. A language B is NP-complete iff $A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$ 1. B is in NP 2. *B* is NP-hard: for any *A* in NP, we have $A \leq_{\mathsf{P}} B$ A polynomial-time verifier runs polynomial in the length of v. A language is polynomially verifiable if it has a polynomial time Important: reduce from: verifier. ▶ to prove B is NP-hard, show $C \leq_{\mathsf{P}} B$ for NP-complete C reduce known NP-complete problem C to target BNP is the class of languages that have polynomial-time verifiers. reduce target problem B from NP-complete problem Cequivalent: A language is in NP iff it is decided by some ▶ If B is NP-complete and $B \in P$, then P = NPnondeterministic polynomial time Turing machine All NP-complete problems are polynomially reducible to one another Assymmetry: **Proving** (witness) \neq **Disproving** (no witness?) (the hardest problems in NP) Def.: A is in coNP if \overline{A} in NP. $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{coNP}$ **Time Complexity** Space Complexity **Time complexity class** TIME(t(n)) = all languages that are Savitch's Theorem decidable by an O(t(n)) (deterministic, single-tape) Turing machine. For any function $f : \mathbb{N} \to \mathbb{R}^+$, where $f(n) \ge n$, A t(n) multitape TM has an equivalent $O(t^2(n))$ single-tape TM. $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$ multi-tape *polynomial* \Rightarrow single-tape *polynomial* \implies NPSPACE = PSPACE Every t(n) nondeterministic TM has an equivalent $2^{O(t(n))}$ PSPACE-completeness: Quantified Boolean Formula = valid ? deterministic single-tape TM. also admits log-space reducibility nondeterministic *polynomial* \Rightarrow single-tape *exponential*

L and NL	Complexity Hierarchies
	$L\subseteqNL=coNL\subseteqP\subseteqNP\subseteqPSPACE\subseteqEXPTIME$
Model for <i>sublinear</i> space: read-only input tape, <i>work tape</i> gives space complexity.	$NL \subsetneq PSPACE \qquad P \subsetneq EXPTIME$
log-space: constant number of pointers to input tape	$f:\mathbb{N}\to N$ that is at least $O(\log n)$ is <i>space constructible</i> if there is a $O(f(n))$ space TM that computes $f(n)$ from 1^n
$PATH = \{ \langle G, s, t \rangle \mid G \text{ is directed graph that has an } s \rightsquigarrow t \text{ path } \}$ is NL-complete.	Space Hierarchy Theorem: For any space constructible function $f: \mathbb{N} \to \mathbb{N}$, there exists a language that is decidable in $O(f(n))$ space but not $o(f(n))$ space.
NL-coNL: Nondeterministic space complexity classes are closed under complementation (Immerman-Szelepcsényi)	$SPACE(n^{c_1}) \subsetneq SPACE(n^{c_2})$ for any real $c_1, c_2 > 0$
$\overrightarrow{\textit{PATH}} \in NL$, guess and re-count number of reachable nodes	$t:\mathbb{N}\to N$ that is at least $O(n\log n)$ is time constructible if $t(n)$ is computable in time $O(t(n))$ from $1^n.$
Traversing $\log n$ -depth tree in log-space: pointer to node at each level is $\log n \implies O(\log^2 n)$; instead: keep constant-bit (bounded degree?) encoding of branch chosen	Time Hierarchy Theorem: For any time constructible function $t : \mathbb{N} \to \mathbb{N}$, there exists a language that is decidable in $O(t(n))$ time but not in time $o(t(n)/\log t(n))$.
	$TIME(n^{c_1}) \subsetneq TIME(n^{c_2})$ for any reals $1 \leq c_1 < c_2$
Circuit Complexity	Branching Programs, Arithmetization
Parameterized circuit families: uniformity, size-depth complexity	
\mathbf{NC}^i : decidable by a uniform family of circuits with polynomial size and $O(\log^i n)$ depth.	Barrington's theorem:
AC ^{<i>i</i>} : like NC, but gates have unlimited fan-in (inputs). TC ^{<i>i</i>} : like AC, and also <i>majority</i> gates ("threshold circuits").	depth d circuit \implies branching program of width 5 and length 4^d . log-depth circuit \implies poly-length program
$NC^i \subseteq AC^i \subseteq TC^i \subseteq NC^{i+1}$	Arithmetization
$NC \subseteq P$ (generate + evaluate in polynomial time)	Construct a characticle form have shine an ensure / formulae for
CIRCUIT-VALUE is P-complete	(dis)proving equivalence (increase probability of finding difference)
$NC^1 \subseteq L$: evaluate in log-space (constant-bit trick per level)	
$NL \subseteq NC^2$: <i>PATH</i> /transitive closure in $\log^2 n$ depth	
Probabilistic Complexity Classes	Alternation
BPP (bounded error): accepts/rejects with error probability $\epsilon < 1/2$	
Amplification lemma: can make error 2 ^{P(w)} for any polynomial	
RP (randomized poly-time): always <i>rejects</i> when it should re-runs make acceptance error arbitrarily small coRP : always <i>accepts</i> when it should	 universal states (AND, ^) accepts if all successors do existential states (OR, V) accepts if some successor does
Clearly $\mathbf{RP} \subseteq \mathbf{BPP}$ (reject error is zero), likewise $\mathbf{coRP} \subseteq \mathbf{BPP}$	Example: <i>MIN-FORMULA</i> in AP:
$\mathbf{P} \subseteq \mathbf{RP}$: no nondeterminism, always right answer	universally select all formulas ψ shorter than ϕ existentially select a truth assignment, eval ψ and ϕ
$RP \subseteq NP$: NTM needs no coin, guesses correct path	
BPP ? NP (no relation is known). It it believed that $\mathbf{P} = \mathbf{BPP}$.	
Polynomial identity testing is in coRP unknown if in P	

Alternation and Space/Time Complexity Connections

(1) $\mathsf{ATIME}(f(n)) \subseteq \mathsf{SPACE}(f(n)) \subseteq \mathsf{ATIME}(f^2(n))$ for $f(n) \ge n$

(2) ASPACE $(f(n)) = \text{TIME}(2^{O(f(n))})$ for $f(n) \ge \log n$

Consequences:

AL = P	(2), $f(n) = \log n$
AP = PSPACE	(1), $f(n) = poly(n)$
APSPACE = EXPTIME	(2), $f(n) = \operatorname{poly}(n)$

Polynomial Time Hierarchy

bound number of alternations between \wedge and \vee \implies hierarchy within AP = PSPACE

 Σ_i alternating TM: at most *i* runs of existential or universal steps, starting with existential steps.

 Π_i alternating TM: at most *i* runs of existential or universal steps, starting with universal steps.

$$\begin{split} \Sigma_i \mathbf{P} &= \bigcup_k \Sigma_i \mathsf{TIME}(n^k) & \Pi_i \mathbf{P} &= \bigcup_k \Pi_i \mathsf{TIME}(n^k) \\ \mathbf{PH} &= \bigcup_i \Sigma_i \mathbf{P} &= \bigcup_i \Pi_i \mathbf{P} \end{split}$$

 $\mathsf{P} = \Sigma_0 \mathsf{P} = \Pi_0 \mathsf{P}$ (no nondeterminism, no alternation)

 $NP = \Sigma_1 P$, $coNP = \Pi_1 P$.

Interactive Proofs

IP a verifier (polynomially computable function) V exists such that for every string w

- 1. for some function $P, w \in A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \ge \frac{2}{3}$ 2. for any function $\tilde{P}, w \notin A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \le \frac{1}{3}$
- ▶ some (honest) prover P can produce likely correct accept ▶ no (dishonest?) prover \tilde{P} can produce likely incorrect accept

Can use amplification to make error probability arbitrarily small.

BPP \subseteq **IP** (need no *P*/ ignore)

 $NP \subseteq IP$ (never wrongly accepts, try often enough)

IP = **PSPACE** (Shamir's Theorem)