
COMPSCI 501: Formal Language Theory
Lecture 39: Review

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

1 May 2019

Automata and Regular Languages

Interesting questions (accept, empty, equivalence) decidable

Useful argument: convert to DFA, minize =⇒ unique form.

Representative problem: ALLNFA

ALLNFA: in PSPACE
nondeterministically guess rejected string
simulate, NFA in ≤ |Q| states at each step (PSPACE)

Does this imply ∈ NP? No. (unknown whether NP, or coNP)

Useful idea: cross-product (shuffle, suffix languages),
also use for PDAs.

Context Free Grammars and Pushdown Automata

Chomsky Normal Form: simplify, bounds on derivation complexity
A→ BC, A→ a, (S → ε)

any derivation has 2|w| − 1 steps
e.g., decide ACFG, try all derivations from S
ACFG ∈ P, dynamic programming (all terminals generating any

substring)

CFG / PDA Equivalence proof:
⇒: nondet. choose rule, push nonterminals, match/pop terminals
⇐: nonterminal for each PDA state pair

Closure properties:
yes: union, concatenation, Kleene star
no: intersection, complement (only DCFL)

Pumping Lemmas
Regular: any language string with |s| ≥ p can be divided into three
pieces, s = xyz, with the conditions
1. xyiz ∈ A for any i ≥ 0
2. |y| > 0
3. |xy| ≤ p
Context-Free: any language string with |s| ≥ p can be divided into
five pieces, s = uvxyz, with the conditions\ 1. uvixyiz ∈ A for
any i ≥ 0
2. |vy| > 0
3. |vxy| ≤ p
Pump up or down (both useful)

Unidirectional:
if pumped string not in language, is not regular/context-free
there are other languages for which pumping holds

e.g., canbn ⋃
ck(a+ b)∗, k 6= 1 nonregular, pumpable

Turing Machines, Recognizability, Decidability

A Turing recognizable (by M1) and Ā Turing recognizable (by M2)
=⇒ A decidable

run M1 and M2 in lockstep, see which halts first

Enumerating

Turing-recognizable ⇔ (recursively) enumerable

run for k steps on s1, s2, . . . sk (dovetailing)

Decidable ⇔ enumerable in lexicographical order

Important: carefully consider language of given problem:
Is is {〈M,w〉 | ...} or just {〈M〉 | ...} ?
If the latter, can’t say “run M on w and . . . ” (what is the input w?)

Problems for Recognizers

Acceptance:
AM = {〈M,w〉|M is a machine that accepts w}
Emptiness
EM = {〈M〉|M is a machine with L(M) = ∅}
Universality
ALLM = {〈M〉|M is a machine with L(M) = Σ∗}
Equivalence
EQM = {〈A,B〉|A,B are machines with L(A) = L(B)}

All decidable for DFA/NFA/REX (convert to minimized DFA)

ACFG, ECFG decidable, ALLCFG, EQCFG not decidable

ATM, HALTTM, ETM, etc. not decidable

Proving Undecidability of a Language L

Diagonalization (directly)

e.g., for proving ATM undecidable

Reducing from ATM. Example: ETM.

Assume decider D for ETM, build decider for ATM.

Construct a TM M1 that will either have an empty language or not,
depending on whether M accepts w.

won’t ever run M1, but feed as input to D

On input x:
if x 6= w, reject
otherwise, run A on w (= x), accept if A does

Thus, L(M1) = {w} if A accepts w, ∅ otherwise
Could use D to decide ATM.

More General: Rice’s Theorem

Let P be a nontrivial property of a Turing machine:
A language property, L(M1) = L(M2)→ (P (M1)↔ P (M2))
At least one TM has this property.

Then P is undecidable.

Let MP a Turing machine with that property.
(Assume language nonempty, else pick complement).

Construct a decider for ATM.

On input 〈M,w〉, construct TM C as follows:
on input x:
run M on w (reject or run forever like M)
if accept, run MP on x, return result

C has same language as MP (if M accepts w) or empty language.
=⇒ could use decider for P to decide ATM.

Proving a Language is not Turing-recognizable

Similar idea, but reduce from ATM.

EQTM not Turing-recognizable nor co-Turing-recognizable.

On input 〈M,w〉, construct two machines:
M∅: rejects any input / Mall: accepts any input
Mw: accept all/none, according to run of M on w

M∅ not EQ Mw iff M accepts w: ATM≤mEQTM, ATM≤mEQTM

Mall EQ Mw iff M accepts w: ATM ≤m EQTM, ATM ≤m EQTM

Mapping reduction: f(〈M,w〉) = 〈M∅,Mw〉 or 〈Mall,Mw〉

Reduction via Computation Histories

Linear Bounded Automata: ALBA decidable (finite number of
configurations), but ELBA is not.

Set of accepting TM computation histories of a TM checkable by an
LBA.

Another use: all strings that are not accepting computation histories
on a string w.
I can generate with a PDA / CFG =⇒ ALLCFG= undecidable

(deciding 6= Σ∗ ⇔ deciding ATM)
I can generate via extended regular expressions

use to prove: equivalence of extended regular expressions
with exponentiation is EXPSPACE-hard.

Mapping Reducibility
Def. A function f : Σ∗ → Σ∗ is a computable function if some
Turing machine M , on input w, halts with just f(w) on tape.

Def. A language A is mapping reducible to language B
(written A ≤m B) if there is a computable function f : Σ∗ → Σ∗
where for every w, w ∈ A⇔ f(w) ∈ B7.4 NP-COMPLETENESS 301

FIGURE 7.30

Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B—but now the conversion is done efficiently. To test whether w ∈ A, we use
the reduction f to map w to f(w) and test whether f(w) ∈ B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.31

If A ≤P B and B ∈ P, then A ∈ P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w ∈ A whenever f(w) ∈ B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w ∈ A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

Before demonstrating a polynomial time reduction, we introduce 3SAT , a
special case of the satisfiability problem whereby all formulas are in a special

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

YES for A means YES for B
NO for A means NO for B

Using Mapping Reducibility

Decidability

If A ≤m B and B is decidable, then A is decidable.

If A ≤m B and A is undecidable then B is undecidable.

Turing-recognizability

If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

If A ≤m B and A is not Turing-recognizable then B is not
Turing-recognizable.

Recursion Theorem

A TM can obtain and execute its own description.

Use: e.g., in proofs by contradiction (do something else than
description says)

e.g. assume ATM has a decider H
Construct a TM B:
On input w:

1. Obtain own description 〈B〉
2. Run H on input 〈B,w〉
3. Do the opposite of H (accept/reject)

Descriptive Complexity

The minimal description of a binary string x is the shortest string
〈M,w〉 where M halts on input w with x on tape.

The descriptive complexity (Kolmogorov complexity) is the length
of the mininmal description: K(x) = |d(x)|

Def.: A string x is c-compressible if K(x) ≤ |x| − c.
incompressible = not 1-compressible.
Most strings are close to incompressible.

Incompressible strings are undecidable.

Can only enumerate a finite subset.

Polynomial Verifiers and NP

Def. A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}
A polynomial-time verifier runs polynomial in the length of v.

A language is polynomially verifiable if it has a polynomial time
verifier.

NP is the class of languages that have polynomial-time verifiers.

equivalent: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine

Assymmetry: Proving (witness) 6= Disproving (no witness?)

Def.: A is in coNP if Ā in NP. P ⊆ NP ∩ coNP

NP-Completeness

Def. A language B is NP-complete iff
1. B is in NP
2. B is NP-hard: for any A in NP, we have A ≤P B

Important: reduce from:
I to prove B is NP-hard, show C ≤P B for NP-complete C

reduce known NP-complete problem C to target B
reduce target problem B from NP-complete problem C

I If B is NP-complete and B ∈ P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Time Complexity

Time complexity class TIME(t(n)) = all languages that are
decidable by an O(t(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t2(n)) single-tape TM.

multi-tape polynomial ⇒ single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 2O(t(n))

deterministic single-tape TM.

nondeterministic polynomial ⇒ single-tape exponential

Space Complexity

Savitch’s Theorem

For any function f : N→ R+, where f(n) ≥ n,
NSPACE(f(n)) ⊆ SPACE(f2(n))

=⇒ NPSPACE = PSPACE

PSPACE-completeness: Quantified Boolean Formula = valid ?
also admits log-space reducibility

L and NL

Model for sublinear space: read-only input tape, work tape gives
space complexity.

log-space: constant number of pointers to input tape

PATH = {〈G, s, t〉 | G is directed graph that has an s t path }
is NL-complete.

NL-coNL: Nondeterministic space complexity classes are closed
under complementation (Immerman-Szelepcsényi)

PATH ∈ NL, guess and re-count number of reachable nodes

Traversing logn-depth tree in log-space:
pointer to node at each level is logn =⇒ O(log2 n); instead:
keep constant-bit (bounded degree?) encoding of branch chosen

Complexity Hierarchies
L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

NL (PSPACE P (EXPTIME

f : N→ N that is at least O(logn) is space constructible if there is
a O(f(n)) space TM that computes f(n) from 1n

Space Hierarchy Theorem: For any space constructible function
f : N→ N, there exists a language that is decidable in O(f(n))
space but not o(f(n)) space.

SPACE(nc1) (SPACE(nc2) for any real c1, c2 > 0

t : N→ N that is at least O(n logn) is time constructible if t(n) is
computable in time O(t(n)) from 1n.

Time Hierarchy Theorem: For any time constructible function
t : N→ N, there exists a language that is decidable in O(t(n)) time
but not in time o(t(n)/ log t(n)).

TIME(nc1) (TIME(nc2) for any reals 1 ≤ c1 < c2

Circuit Complexity

Parameterized circuit families: uniformity, size-depth complexity

NCi: decidable by a uniform family of circuits with polynomial size
and O(logi n) depth.

ACi: like NC, but gates have unlimited fan-in (inputs).
TCi: like AC, and also majority gates (“threshold circuits”).

NCi ⊆ ACi ⊆ TCi ⊆ NCi+1

NC ⊆ P (generate + evaluate in polynomial time)

CIRCUIT-VALUE is P-complete

NC1 ⊆ L: evaluate in log-space (constant-bit trick per level)

NL ⊆ NC2: PATH/transitive closure in log2 n depth

Branching Programs, Arithmetization

Barrington’s theorem:
depth d circuit =⇒ branching program of width 5 and length 4d.
log-depth circuit =⇒ poly-length program

Arithmetization:

Construct polynomials from branching programs / formulas for
(dis)proving equivalence (increase probability of finding difference)

Probabilistic Complexity Classes

BPP (bounded error): accepts/rejects with error probability ε < 1/2

Amplification lemma: can make error 2−p(n) for any polynomial

RP (randomized poly-time): always rejects when it should
re-runs make acceptance error arbitrarily small

coRP: always accepts when it should

Clearly RP ⊆ BPP (reject error is zero), likewise coRP ⊆ BPP

P ⊆ RP: no nondeterminism, always right answer

RP ⊆ NP: NTM needs no coin, guesses correct path

BPP ? NP (no relation is known). It it believed that P = BPP.

Polynomial identity testing is in coRP, unknown if in P.

Alternation

I universal states (AND, ∧) accepts if all successors do
I existential states (OR, ∨) accepts if some successor does

Example: MIN-FORMULA in AP:
universally select all formulas ψ shorter than φ
existentially select a truth assignment, eval ψ and φ

Alternation and Space/Time Complexity Connections

(1) ATIME(f(n)) ⊆ SPACE(f(n)) ⊆ ATIME(f2(n)) for f(n) ≥ n

(2) ASPACE(f(n)) = TIME(2O(f(n))) for f(n) ≥ logn

Consequences:

AL = P (2), f(n) = logn

AP = PSPACE (1), f(n) = poly(n)

APSPACE = EXPTIME (2), f(n) = poly(n)

Polynomial Time Hierarchy

bound number of alternations between ∧ and ∨
=⇒ hierarchy within AP = PSPACE

Σi alternating TM: at most i runs of existential or universal steps,
starting with existential steps.

Πi alternating TM: at most i runs of existential or universal steps,
starting with universal steps.

ΣiP =
⋃

k

ΣiTIME(nk) ΠiP =
⋃

k

ΠiTIME(nk)

PH = ⋃
i ΣiP = ⋃

i ΠiP

P = Σ0P = Π0P (no nondeterminism, no alternation)

NP = Σ1P, coNP = Π1P.

Interactive Proofs

IP a verifier (polynomially computable function) V exists such that
for every string w

1. for some function P , w ∈ A =⇒ Pr[V ↔ P accepts w] ≥ 2
3

2. for any function P̃ , w /∈ A =⇒ Pr[V ↔ P accepts w] ≤ 1
3

I some (honest) prover P can produce likely correct accept
I no (dishonest?) prover P̃ can produce likely incorrect accept

Can use amplification to make error probability arbitrarily small.

BPP ⊆ IP (need no P/ ignore)

NP ⊆ IP (never wrongly accepts, try often enough)

IP = PSPACE (Shamir’s Theorem)

