COMPSCI 501: Formal Language Theory

Lecture 39: Review
Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

1 May 2019

Automata and Regular Languages

Interesting questions (accept, empty, equivalence) decidable
Useful argument: convert to DFA, minize = unique form.
Representative problem: AL Lynra

ALLnga: in PSPACE

nondeterministically guess rejected string

simulate, NFA in < |Q| states at each step (PSPACE)
Does this imply € NP? No. (unknown whether NP, or coNP)

Useful idea: cross-product (shuffle, suffix languages),
also use for PDAs.

Context Free Grammars and Pushdown Automata

Chomsky Normal Form: simplify, bounds on derivation complexity
A— BC, A—a, (S—¢)

any derivation has 2|w| — 1 steps

e.g., decide Acpg, try all derivations from S

Acgg € P, dynamic programming (all terminals generating any
substring)

CFG / PDA Equivalence proof:
= nondet. choose rule, push nonterminals, match/pop terminals
<: nonterminal for each PDA state pair

Closure properties:
yes: union, concatenation, Kleene star
no: intersection, complement (only DCFL)

Pumping Lemmas

Regular: any language string with |s| > p can be divided into three
pieces, s = xyz, with the conditions

1. zy’z € Aforanyi >0

2. |y >0

3. Jayl <p

Context-Free: any language string with |s| > p can be divided into
five pieces, s = uvzryz, with the conditions\ 1. uv'zy'z € A for
any ¢ >0
2. vyl >0
3. Jvay| <p
Pump up or down (both useful)
Unidirectional:
if pumped string not in language, is not regular/context-free

there are other languages for which pumping holds
e.g., ca™|Jc¥(a + b)*, k # 1 nonregular, pumpable

Turing Machines, Recognizability, Decidability

A Turing recognizable (by M) and A Turing recognizable (by My)
—> A decidable

run M; and M> in lockstep, see which halts first

Enumerating

Turing-recognizable < (recursively) enumerable
run for k steps on s1, s2, ... s (dovetailing)

Decidable <> enumerable in lexicographical order

Important: carefully consider language of given problem:
Isis {(M,w) | ..} orjust {(M)|..} ?
If the latter, can't say “run M on w and ...

(what is the input w?)

Problems for Recognizers

Acceptance:
Apnr = {(M,w)|M is a machine that accepts w}

Emptiness
En = {{M)|M is a machine with L(M) = 0}

Universality
ALLp = {(M)|M is a machine with L(M) = ¥*}

Equivalence

EQwn = {(A, B)|A, B are machines with L(A) = L(B)}

All decidable for DFA/NFA/REX (convert to minimized DFA)
Ackg, Ecpg decidable, ALLcgg, EQcpg not decidable

Atm, HALTTMm, ETm, etc. not decidable

Proving Undecidability of a Language L

Diagonalization (directly)

e.g., for proving Aty undecidable

Reducing from Aty. Example: Ety.
Assume decider D for E1y, build decider for Atpm.

Construct a TM M; that will either have an empty language or not,
depending on whether M accepts w.
won't ever run M7, but feed as input to D

On input z:
if x # w, reject
otherwise, run A on w (= z), accept if A does

Thus, L(M;) = {w} if A accepts w,) otherwise
Could use D to decide Atwm.

More General: Rice's Theorem

Let P be a nontrivial property of a Turing machine:
A language property, L(M;) = L(My) — (P(M;) <» P(My))
At least one TM has this property.

Then P is undecidable.

Let MP a Turing machine with that property.
(Assume language nonempty, else pick complement).

Construct a decider for Atpm.

On input (M, w), construct TM C' as follows:
on input x:
run M on w (reject or run forever like M)
if accept, run MP on z, return result

C' has same language as MP (if M accepts w) or empty language.
= could use decider for P to decide Atpy.

Proving a Language is not Turing-recognizable

Similar idea, but reduce from Aty.

EQtm not Turing-recognizable nor co-Turing-recognizable.

On input (M, w), construct two machines:
My: rejects any input / M,y accepts any input
M,,: accept all/none, according to run of M on w

My not EQ M,, iff M accepts w: Atm <m EQTM, ATM <m EQTM
]Mall EQ]Ww iff M accepts w: ATM Sm EQTM, ATM Sm EQTM
Mapping reduction: f((M,w)) = (My, My,) or (Mg, My)

Reduction via Computation Histories

Linear Bounded Automata: A ga decidable (finite number of
configurations), but F| ga is not.

Set of accepting TM computation histories of a TM checkable by an
LBA.

Another use: all strings that are not accepting computation histories
on a string w.
» can generate with a PDA / CFG — ALLcgg= undecidable
(deciding # * < deciding Atm)

» can generate via extended regular expressions
use to prove: equivalence of extended regular expressions
with exponentiation is EXPSPACE-hard.

Mapping Reducibility
Def. A function f : ¥* — ¥* is a computable function if some
Turing machine M, on input w, halts with just f(w) on tape.

Def. A language A is mapping reducible to language B
(written A <., B) if there is a computable function f : ¥* — X*
where for every w, w € A & f(w) € B

/

YES for A means YES for B
NO for A means NO for B

Using Mapping Reducibility

Decidability
If A<, B and B is decidable, then A is decidable.
If A <., B and A is undecidable then B is undecidable.

Turing-recognizability

If A<, B and B is Turing-recognizable, then A is
Turing-recognizable.

If A <mn B and A is not Turing-recognizable then B is not
Turing-recognizable.

Recursion Theorem

A TM can obtain and execute its own description.

Use: e.g., in proofs by contradiction (do something else than
description says)

e.g. assume Aty has a decider H
Construct a TM B:
On input w:
1. Obtain own description (B)
2. Run H on input (B, w)
3. Do the opposite of H (accept/reject)

Descriptive Complexity

The minimal description of a binary string z is the shortest string
(M, w) where M halts on input w with = on tape.

The descriptive complexity (Kolmogorov complexity) is the length
of the mininmal description: K(z) = |d(z)|
Def.: A string x is c-compressible if K(z) < |z| —c.

incompressible = not 1-compressible.
Most strings are close to incompressible.

Incompressible strings are undecidable.

Can only enumerate a finite subset.

Polynomial Verifiers and NP

Def. A verifier for a language A is an algorithm V', where

A ={w |V accepts (w, c) for some string c}
A polynomial-time verifier runs polynomial in the length of v.
A language is polynomially verifiable if it has a polynomial time
verifier.
NP is the class of languages that have polynomial-time verifiers.
equivalent: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine
Assymmetry: Proving (witness) # Disproving (no witness?)

Def.: Aisin coNP if A in NP. P C NP N coNP

NP-Completeness

Def. A language B is NP-complete iff
1. Bisin NP
2. B is NP-hard: for any A in NP, we have A <p B

Important: reduce from:

» to prove B is NP-hard, show C <p B for NP-complete C
reduce known NP-complete problem C' to target B
reduce target problem B from NP-complete problem C'

» If B is NP-complete and B € P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Time Complexity

Time complexity class TIME(¢(n)) = all languages that are
decidable by an O(t(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t?(n)) single-tape TM.

multi-tape polynomial = single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 20(:("))
deterministic single-tape TM.

nondeterministic polynomial = single-tape exponential

Space Complexity

Savitch’s Theorem

For any function f : N — R, where f(n) > n,
NSPACE(f(n)) C SPACE(f2(n))

= NPSPACE = PSPACE

PSPACE-completeness: Quantified Boolean Formula = valid ?
also admits log-space reducibility

L and NL

Model for sublinear space: read-only input tape, work tape gives
space complexity.

log-space: constant number of pointers to input tape

PATH = {(G, s,t) | G is directed graph that has an s ~~ t path }
is NL-complete.

NL-coNL: Nondeterministic space complexity classes are closed
under complementation (Immerman-Szelepcsényi)

PATH € NL, guess and re-count number of reachable nodes

Traversing log n-depth tree in log-space:
pointer to node at each level is logn = O(log2 n); instead:
keep constant-bit (bounded degree?) encoding of branch chosen

Complexity Hierarchies
L € NL = coNL € P C NP C PSPACE C EXPTIME

NL C PSPACE P C EXPTIME

f:N — N that is at least O(logn) is space constructible if there is
a O(f(n)) space TM that computes f(n) from 1"

Space Hierarchy Theorem: For any space constructible function
/N =N, there exists a language that is decidable in O(f(n))
space but not o(f(n)) space.

SPACE(n®) ¢ SPACE(n°?) for any real ¢1,c2 > 0
t: N — N that is at least O(nlogn) is time constructible if t(n) is
computable in time O(t(n)) from 1™.

Time Hierarchy Theorem: For any time constructible function
t : N — N, there exists a language that is decidable in O(t(n)) time
but not in time o(t(n)/logt(n)).

TIME(n) C TIME(n) for any reals 1 < ¢; < ¢3

Circuit Complexity

Parameterized circuit families: uniformity, size-depth complexity

NCi: decidable by a uniform family of circuits with polynomial size
and O(log’ n) depth.

AC: like NC, but gates have unlimited fan-in (inputs).
TC% like AC, and also majority gates (“threshold circuits”).

NC! C AC' C TC! C NCH!
NC C P (generate + evaluate in polynomial time)
CIRCUIT-VALUE is P-complete

NC! C L: evaluate in log-space (constant-bit trick per level)

NL C NC2: PATH/transitive closure in log? n depth

Branching Programs, Arithmetization

Barrington’s theorem:
depth d circuit = branching program of width 5 and length 4¢.
log-depth circuit = poly-length program

Arithmetization:

Construct polynomials from branching programs / formulas for
(dis)proving equivalence (increase probability of finding difference)

Probabilistic Complexity Classes

BPP (bounded error): accepts/rejects with error probability e < 1/2
Amplification lemma: can make error 272(") for any polynomial

RP (randomized poly-time): always rejects when it should
re-runs make acceptance error arbitrarily small
coRP: always accepts when it should

Clearly RP C BPP (reject error is zero), likewise coRP C BPP
P C RP: no nondeterminism, always right answer

RP C NP: NTM needs no coin, guesses correct path

BPP ? NP (no relation is known). It it believed that P = BPP.

Polynomial identity testing is in coRP, unknown if in P.

Alternation

» universal states (AND, A) accepts if all successors do
> existential states (OR, V) accepts if some successor does

Example: MIN-FORMULA in AP:
universally select all formulas ¢ shorter than ¢
existentially select a truth assignment, eval ¢ and ¢

Alternation and Space/Time Complexity Connections

(1) ATIME(f(n)) C SPACE(f(n)) C ATIME(f2(n)) for f(n) > n

(2) ASPACE(f(n)) = TIME(20U ™)) for f(n) > logn

Consequences:
AL=P (2), f(n) =logn
AP = PSPACE (1), f(n) = poly(n)

APSPACE = EXPTIME (2), f(n) = poly(n)

Polynomial Time Hierarchy

bound number of alternations between A and Vv
= hierarchy within AP = PSPACE

3J; alternating TM: at most ¢ runs of existential or universal steps,
starting with existential steps.

II; alternating TM: at most i runs of existential or universal steps,
starting with universal steps.

2P = S TIME(n) IL,P = [JILTIME(n*)
k k

PH = U, =P = U, TL,P
P = 3¢P = II)P (no nondeterminism, no alternation)

NP = ¥;P, coNP = II;P.

Interactive Proofs

IP a verifier (polynomially computable function) V' exists such that
for every string w

1. for some function P, w € A = Pr[V «+ P accepts w

=
2. for any function P, w ¢ A = Pr[V < P accepts w] < &

3
3
» some (honest) prover P can produce likely correct accept

» no (dishonest?) prover P can produce likely incorrect accept

Can use amplification to make error probability arbitrarily small.

BPP C IP (need no P/ ignore)

NP C IP (never wrongly accepts, try often enough)

IP = PSPACE (Shamir's Theorem)

