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Automata and Regular Languages

Interesting questions (accept, empty, equivalence) decidable

Useful argument: convert to DFA, minize =⇒ unique form.

Representative problem: ALLNFA

ALLNFA: in PSPACE
nondeterministically guess rejected string
simulate, NFA in ≤ |Q| states at each step (PSPACE)

Does this imply ∈ NP? No. (unknown whether NP, or coNP)

Useful idea: cross-product (shuffle, suffix languages),
also use for PDAs.

Context Free Grammars and Pushdown Automata

Chomsky Normal Form: simplify, bounds on derivation complexity
A→ BC, A→ a, (S → ε)

any derivation has 2|w| − 1 steps
e.g., decide ACFG, try all derivations from S
ACFG ∈ P, dynamic programming (all terminals generating any

substring)

CFG / PDA Equivalence proof:
⇒: nondet. choose rule, push nonterminals, match/pop terminals
⇐: nonterminal for each PDA state pair

Closure properties:
yes: union, concatenation, Kleene star
no: intersection, complement (only DCFL)

Pumping Lemmas
Regular: any language string with |s| ≥ p can be divided into three
pieces, s = xyz, with the conditions
1. xyiz ∈ A for any i ≥ 0
2. |y| > 0
3. |xy| ≤ p
Context-Free: any language string with |s| ≥ p can be divided into
five pieces, s = uvxyz, with the conditions\ 1. uvixyiz ∈ A for
any i ≥ 0
2. |vy| > 0
3. |vxy| ≤ p
Pump up or down (both useful)

Unidirectional:
if pumped string not in language, is not regular/context-free
there are other languages for which pumping holds

e.g., canbn ⋃
ck(a+ b)∗, k 6= 1 nonregular, pumpable

Turing Machines, Recognizability, Decidability

A Turing recognizable (by M1) and Ā Turing recognizable (by M2)
=⇒ A decidable

run M1 and M2 in lockstep, see which halts first

Enumerating

Turing-recognizable ⇔ (recursively) enumerable

run for k steps on s1, s2, . . . sk (dovetailing)

Decidable ⇔ enumerable in lexicographical order

Important: carefully consider language of given problem:
Is is {〈M,w〉 | ...} or just {〈M〉 | ...} ?
If the latter, can’t say “run M on w and . . . ” (what is the input w?)

Problems for Recognizers

Acceptance:
AM = {〈M,w〉|M is a machine that accepts w}
Emptiness
EM = {〈M〉|M is a machine with L(M) = ∅}
Universality
ALLM = {〈M〉|M is a machine with L(M) = Σ∗}
Equivalence
EQM = {〈A,B〉|A,B are machines with L(A) = L(B)}

All decidable for DFA/NFA/REX (convert to minimized DFA)

ACFG, ECFG decidable, ALLCFG, EQCFG not decidable

ATM, HALTTM, ETM, etc. not decidable



Proving Undecidability of a Language L

Diagonalization (directly)

e.g., for proving ATM undecidable

Reducing from ATM. Example: ETM.

Assume decider D for ETM, build decider for ATM.

Construct a TM M1 that will either have an empty language or not,
depending on whether M accepts w.

won’t ever run M1, but feed as input to D

On input x:
if x 6= w, reject
otherwise, run A on w (= x), accept if A does

Thus, L(M1) = {w} if A accepts w, ∅ otherwise
Could use D to decide ATM.

More General: Rice’s Theorem

Let P be a nontrivial property of a Turing machine:
A language property, L(M1) = L(M2)→ (P (M1)↔ P (M2))
At least one TM has this property.

Then P is undecidable.

Let MP a Turing machine with that property.
(Assume language nonempty, else pick complement).

Construct a decider for ATM.

On input 〈M,w〉, construct TM C as follows:
on input x:
run M on w (reject or run forever like M)
if accept, run MP on x, return result

C has same language as MP (if M accepts w) or empty language.
=⇒ could use decider for P to decide ATM.

Proving a Language is not Turing-recognizable

Similar idea, but reduce from ATM.

EQTM not Turing-recognizable nor co-Turing-recognizable.

On input 〈M,w〉, construct two machines:
M∅: rejects any input / Mall: accepts any input
Mw: accept all/none, according to run of M on w

M∅ not EQ Mw iff M accepts w: ATM≤mEQTM, ATM≤mEQTM

Mall EQ Mw iff M accepts w: ATM ≤m EQTM, ATM ≤m EQTM

Mapping reduction: f(〈M,w〉) = 〈M∅,Mw〉 or 〈Mall,Mw〉

Reduction via Computation Histories

Linear Bounded Automata: ALBA decidable (finite number of
configurations), but ELBA is not.

Set of accepting TM computation histories of a TM checkable by an
LBA.

Another use: all strings that are not accepting computation histories
on a string w.
I can generate with a PDA / CFG =⇒ ALLCFG= undecidable

(deciding 6= Σ∗ ⇔ deciding ATM)
I can generate via extended regular expressions

use to prove: equivalence of extended regular expressions
with exponentiation is EXPSPACE-hard.

Mapping Reducibility
Def. A function f : Σ∗ → Σ∗ is a computable function if some
Turing machine M , on input w, halts with just f(w) on tape.

Def. A language A is mapping reducible to language B
(written A ≤m B) if there is a computable function f : Σ∗ → Σ∗
where for every w, w ∈ A⇔ f(w) ∈ B7.4 NP-COMPLETENESS 301

FIGURE 7.30

Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B—but now the conversion is done efficiently. To test whether w ∈ A, we use
the reduction f to map w to f(w) and test whether f(w) ∈ B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.31

If A ≤P B and B ∈ P, then A ∈ P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w ∈ A whenever f(w) ∈ B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w ∈ A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

Before demonstrating a polynomial time reduction, we introduce 3SAT , a
special case of the satisfiability problem whereby all formulas are in a special
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YES for A means YES for B
NO for A means NO for B

Using Mapping Reducibility

Decidability

If A ≤m B and B is decidable, then A is decidable.

If A ≤m B and A is undecidable then B is undecidable.

Turing-recognizability

If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

If A ≤m B and A is not Turing-recognizable then B is not
Turing-recognizable.



Recursion Theorem

A TM can obtain and execute its own description.

Use: e.g., in proofs by contradiction (do something else than
description says)

e.g. assume ATM has a decider H
Construct a TM B:
On input w:

1. Obtain own description 〈B〉
2. Run H on input 〈B,w〉
3. Do the opposite of H (accept/reject)

Descriptive Complexity

The minimal description of a binary string x is the shortest string
〈M,w〉 where M halts on input w with x on tape.

The descriptive complexity (Kolmogorov complexity) is the length
of the mininmal description: K(x) = |d(x)|

Def.: A string x is c-compressible if K(x) ≤ |x| − c.
incompressible = not 1-compressible.
Most strings are close to incompressible.

Incompressible strings are undecidable.

Can only enumerate a finite subset.

Polynomial Verifiers and NP

Def. A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}
A polynomial-time verifier runs polynomial in the length of v.

A language is polynomially verifiable if it has a polynomial time
verifier.

NP is the class of languages that have polynomial-time verifiers.

equivalent: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine

Assymmetry: Proving (witness) 6= Disproving (no witness?)

Def.: A is in coNP if Ā in NP. P ⊆ NP ∩ coNP

NP-Completeness

Def. A language B is NP-complete iff
1. B is in NP
2. B is NP-hard: for any A in NP, we have A ≤P B

Important: reduce from:
I to prove B is NP-hard, show C ≤P B for NP-complete C

reduce known NP-complete problem C to target B
reduce target problem B from NP-complete problem C

I If B is NP-complete and B ∈ P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Time Complexity

Time complexity class TIME(t(n)) = all languages that are
decidable by an O(t(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t2(n)) single-tape TM.

multi-tape polynomial ⇒ single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 2O(t(n))

deterministic single-tape TM.

nondeterministic polynomial ⇒ single-tape exponential

Space Complexity

Savitch’s Theorem

For any function f : N→ R+, where f(n) ≥ n,
NSPACE(f(n)) ⊆ SPACE(f2(n))

=⇒ NPSPACE = PSPACE

PSPACE-completeness: Quantified Boolean Formula = valid ?
also admits log-space reducibility



L and NL

Model for sublinear space: read-only input tape, work tape gives
space complexity.

log-space: constant number of pointers to input tape

PATH = {〈G, s, t〉 | G is directed graph that has an s t path }
is NL-complete.

NL-coNL: Nondeterministic space complexity classes are closed
under complementation (Immerman-Szelepcsényi)

PATH ∈ NL, guess and re-count number of reachable nodes

Traversing logn-depth tree in log-space:
pointer to node at each level is logn =⇒ O(log2 n); instead:
keep constant-bit (bounded degree?) encoding of branch chosen

Complexity Hierarchies
L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

NL ( PSPACE P ( EXPTIME

f : N→ N that is at least O(logn) is space constructible if there is
a O(f(n)) space TM that computes f(n) from 1n

Space Hierarchy Theorem: For any space constructible function
f : N→ N, there exists a language that is decidable in O(f(n))
space but not o(f(n)) space.

SPACE(nc1) ( SPACE(nc2) for any real c1, c2 > 0

t : N→ N that is at least O(n logn) is time constructible if t(n) is
computable in time O(t(n)) from 1n.

Time Hierarchy Theorem: For any time constructible function
t : N→ N, there exists a language that is decidable in O(t(n)) time
but not in time o(t(n)/ log t(n)).

TIME(nc1) ( TIME(nc2) for any reals 1 ≤ c1 < c2

Circuit Complexity

Parameterized circuit families: uniformity, size-depth complexity

NCi: decidable by a uniform family of circuits with polynomial size
and O(logi n) depth.

ACi: like NC, but gates have unlimited fan-in (inputs).
TCi: like AC, and also majority gates (“threshold circuits”).

NCi ⊆ ACi ⊆ TCi ⊆ NCi+1

NC ⊆ P (generate + evaluate in polynomial time)

CIRCUIT-VALUE is P-complete

NC1 ⊆ L: evaluate in log-space (constant-bit trick per level)

NL ⊆ NC2: PATH/transitive closure in log2 n depth

Branching Programs, Arithmetization

Barrington’s theorem:
depth d circuit =⇒ branching program of width 5 and length 4d.
log-depth circuit =⇒ poly-length program

Arithmetization:

Construct polynomials from branching programs / formulas for
(dis)proving equivalence (increase probability of finding difference)

Probabilistic Complexity Classes

BPP (bounded error): accepts/rejects with error probability ε < 1/2

Amplification lemma: can make error 2−p(n) for any polynomial

RP (randomized poly-time): always rejects when it should
re-runs make acceptance error arbitrarily small

coRP: always accepts when it should

Clearly RP ⊆ BPP (reject error is zero), likewise coRP ⊆ BPP

P ⊆ RP: no nondeterminism, always right answer

RP ⊆ NP: NTM needs no coin, guesses correct path

BPP ? NP (no relation is known). It it believed that P = BPP.

Polynomial identity testing is in coRP, unknown if in P.

Alternation

I universal states (AND, ∧) accepts if all successors do
I existential states (OR, ∨) accepts if some successor does

Example: MIN-FORMULA in AP:
universally select all formulas ψ shorter than φ
existentially select a truth assignment, eval ψ and φ



Alternation and Space/Time Complexity Connections

(1) ATIME(f(n)) ⊆ SPACE(f(n)) ⊆ ATIME(f2(n)) for f(n) ≥ n

(2) ASPACE(f(n)) = TIME(2O(f(n))) for f(n) ≥ logn

Consequences:

AL = P (2), f(n) = logn

AP = PSPACE (1), f(n) = poly(n)

APSPACE = EXPTIME (2), f(n) = poly(n)

Polynomial Time Hierarchy

bound number of alternations between ∧ and ∨
=⇒ hierarchy within AP = PSPACE

Σi alternating TM: at most i runs of existential or universal steps,
starting with existential steps.

Πi alternating TM: at most i runs of existential or universal steps,
starting with universal steps.

ΣiP =
⋃

k

ΣiTIME(nk) ΠiP =
⋃

k

ΠiTIME(nk)

PH = ⋃
i ΣiP = ⋃

i ΠiP

P = Σ0P = Π0P (no nondeterminism, no alternation)

NP = Σ1P, coNP = Π1P.

Interactive Proofs

IP a verifier (polynomially computable function) V exists such that
for every string w

1. for some function P , w ∈ A =⇒ Pr[V ↔ P accepts w] ≥ 2
3

2. for any function P̃ , w /∈ A =⇒ Pr[V ↔ P accepts w] ≤ 1
3

I some (honest) prover P can produce likely correct accept
I no (dishonest?) prover P̃ can produce likely incorrect accept

Can use amplification to make error probability arbitrarily small.

BPP ⊆ IP (need no P/ ignore)

NP ⊆ IP (never wrongly accepts, try often enough)

IP = PSPACE (Shamir’s Theorem)


