	Cryptography: Fundamental Problems
COMPSCI 501: Formal Language Theory Lecture 38: Cryptography Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	 Goal Today: fundamental cryptographic problems and primitives expressing them formally Basic Goals: confidentiality, integrity, availability More: authentication, signatures, timestamping, witnessing, anonymity, non-repudiation, ownership, revocation, etc. Communication: send message over insecure channel (intruder has access)
29 April 2019	
Symmetric Encryption	Hash functions
Same key used for encryption and decryption (shared by two parties) Perfect security: one-time pad $c = m \oplus k$: XOR with key of message length, never reused pause: impractical, must somehow transmit same information quantity (key) Short keys: vulnerable to brute-force search of key space Or: cryptanalysis of message stream (if output not perfectly random)	 preimage resistance (not invertible) computationally infeasible to find input x' with h(x') = y 2nd-preimage resistance computationally infeasible to find second input mapping to same output knowing x, find x' ≠ x with h(x') = h(x) 3. collision resistance computationally infeasible to find distinct inputs with same output, h(x') = h(x).
One-Way FunctionsEasy to compute, hard to invertOne-way permutation: a permutation f such that1. it is computable in polynomial time2. $\Pr_{M,w}[M(f(w)) = w] \leq n^{-k}$ for every PPTM M, every k, sufficiently large n, and $w \in \Sigma^n$ One-way function = length-preserving function such that1. it is computable in polynomial time2. $\Pr_{M,w}[M(f(w)) = y \text{ with } f(y) = f(w)] \leq n^{-k}$ for every PPTM M, every k, sufficiently large n, and $w \in \Sigma^n$ We only have some y, not $y = w$, since f_i need not be injective. #Candidates for One-Way FunctionsExistence of one-way functions unknown.Would imply NP $\not\subseteq$ BPP and thus $P \neq$ NP.	Public-Key Cryptosystems Public key E (encryption key) publicized, needs to be bound to user (certificate) Private key D (decryption key) Encrypt: with public key of recipient. Only recipient can decrypt, $D(E(m)) = m$

Trapdoor Functions

Indexing function: convert family of functions $\{f_i\}$ with $i \in \Sigma^*$ to a single function $f(i, w) = f_i(w), f : \Sigma^* \times \Sigma^* : \Sigma^*$.

Trapdoor function: easy to invert with extra info, hard without. $f: \Sigma^* \times \Sigma^* : \Sigma^*$, with additional PPTM G and function $h: \Sigma^* \times \Sigma^* : \Sigma^*$, such that

- 1. f and h computable in polynomial time
- 2. $\operatorname{Pr}_{E,w}[E(i, f_i(w)) = y \text{ with } f_i(y) = f_i(w)] \leq n^{-k} \text{ for every } PPTM \ E, \text{ every } k, \text{ sufficiently large } n, \text{ random } w \in \Sigma^n, \text{ and random output } \langle i, t \rangle \text{ of } G \text{ on } 1^n.$
- 3. For every $n, w \in \Sigma^n$, and every non-zero probability output $\langle i, t \rangle$ of G on some input,

 $h(t, f_i(w)) = y$, where $f_i(y) = f_i(w)$

G generates index i and trapdoor t that allows inverting f_i (note that in (2), the trapdoor t is unavailable)

Trapdoor example: RSA

Key generation:

choose n-bit primes p, q (random numbers, test for primality)

compute n = pq and Euler totient $\phi(n) = (p-1)(q-1)$ (count of numbers < n and relatively prime to n)

choose *encryption exponent* $1 < e < \phi(n)$, relatively prime to $\phi(n)$ compute inverse d, $de \equiv 1 \pmod{\phi(n)}$.

Encryption: $f_{n,e}(w) = w^e \pmod{n}$ Decryption: $h(d, x) = x^d \pmod{n}$

Reason: $(w^e)^d=w^{de}=w \pmod{n}$ because $de\equiv 1 \pmod{\phi(n)}$ (from Euler's theorem and Chinese Remainder Theorem)