
COMPSCI 501: Formal Language Theory
Lecture 38: Cryptography

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

29 April 2019

Cryptography: Fundamental Problems

Goal Today:
I fundamental cryptographic problems and primitives
I expressing them formally

I Basic Goals: confidentiality, integrity, availability
I More: authentication, signatures, timestamping, witnessing,

anonymity, non-repudiation, ownership, revocation, etc.

I Communication: send message over insecure channel (intruder
has access)

Symmetric Encryption

Same key used for encryption and decryption (shared by two parties)

Perfect security: one-time pad

c = m⊕ k: XOR with key of message length, never reused
pause: impractical, must somehow transmit same information
quantity (key)

Short keys: vulnerable to brute-force search of key space
Or: cryptanalysis of message stream (if output not perfectly
random)

Hash functions

1. preimage resistance (not invertible)

computationally infeasible to find input x′ with h(x′) = y

2. 2nd-preimage resistance

computationally infeasible to find second input mapping to same
output

knowing x, find x′ 6= x with h(x′) = h(x)

3. collision resistance

computationally infeasible to find distinct inputs with same output,
h(x′) = h(x).

One-Way Functions
Easy to compute, hard to invert

One-way permutation: a permutation f such that

1. it is computable in polynomial time
2. PrM,w[M(f(w)) = w] ≤ n−k for every PPTM M , every k,

sufficiently large n, and w ∈ Σn

One-way function = length-preserving function such that

1. it is computable in polynomial time
2. PrM,w[M(f(w)) = y with f(y) = f(w)] ≤ n−k for every

PPTM M , every k, sufficiently large n, and w ∈ Σn

We only have some y, not y = w, since fi need not be injective. #
Candidates for One-Way Functions

Existence of one-way functions unknown.

Would imply NP 6⊆ BPP and thus P 6= NP.

Sample candidate: multiplication

Split w in halves w = w1w2.

Define mult(w) = w1 · w2.

No probabilistic polynomial-time algorithm to invert is known.

One-way functions: used for password storage (salt, then hash).

Public-Key Cryptosystems

Public key E (encryption key)
publicized, needs to be bound to user (certificate)

Private key D (decryption key)

Encrypt: with public key of recipient.
Only recipient can decrypt, D(E(m)) = m



Trapdoor Functions
Indexing function: convert family of functions {fi} with i ∈ Σ∗ to
a single function f(i, w) = fi(w), f : Σ∗ × Σ∗ : Σ∗.

Trapdoor function: easy to invert with extra info, hard without.
f : Σ∗ × Σ∗ : Σ∗, with additional PPTM G and function
h : Σ∗ × Σ∗ : Σ∗, such that

1. f and h computable in polynomial time

2. PrE,w[E(i, fi(w)) = y with fi(y) = fi(w)] ≤ n−k for every
PPTM E, every k, sufficiently large n, random w ∈ Σn, and
random output 〈i, t〉 of G on 1n.

3. For every n, w ∈ Σn, and every non-zero probability output
〈i, t〉 of G on some input,

h(t, fi(w)) = y, where fi(y) = fi(w)

G generates index i and trapdoor t that allows inverting fi

(note that in (2), the trapdoor t is unavailable)

Trapdoor example: RSA

Key generation:

choose n-bit primes p, q (random numbers, test for primality)

compute n = pq and Euler totient φ(n) = (p− 1)(q − 1)
(count of numbers < n and relatively prime to n)

choose encryption exponent 1 < e < φ(n), relatively prime to φ(n)
compute inverse d, de ≡ 1 (mod φ(n)).

public key: (n, e) private key: d.
Formally, PPTM G outputs ((n, e), d)

Encryption: fn,e(w) = we (mod n)
Decryption: h(d, x) = xd (mod n)

Reason: (we)d = wde = w (mod n) because de ≡ 1 (mod φ(n))
(from Euler’s theorem and Chinese Remainder Theorem)


