Cryptography: Fundamental Problems

Goal Today:
- fundamental cryptographic problems and primitives
- expressing them formally
- Basic Goals: confidentiality, integrity, availability
- More: authentication, signatures, timestamping, witnessing, anonymity, non-repudiation, ownership, revocation, etc.
- Communication: send message over insecure channel (intruder has access)

Symmetric Encryption

Same key used for encryption and decryption (shared by two parties)
Perfect security: one-time pad
\[c = m \oplus k \]: XOR with key of message length, never reused
pause: impractical, must somehow transmit same information quantity (key)
Short keys: vulnerable to brute-force search of key space
Or: cryptanalysis of message stream (if output not perfectly random)

Hash functions

1. preimage resistance (not invertible)
 computationally infeasible to find input \(x' \) with \(h(x') = y \)
2. 2nd-preimage resistance
 computationally infeasible to find second input mapping to same output
 knowing \(x \), find \(x' \neq x \) with \(h(x') = h(x) \)
3. collision resistance
 computationally infeasible to find distinct inputs with same output, \(h(x') = h(x) \).

One-Way Functions

Easy to compute, hard to invert

One-way permutation: a permutation \(f \) such that
1. it is computable in polynomial time
2. \(\Pr_{M,w}[M(f(w)) = w] \leq n^{-k} \) for every PPTM \(M \), every \(k \), sufficiently large \(n \), and \(w \in \Sigma^n \)

One-way function = length-preserving function such that
1. it is computable in polynomial time
2. \(\Pr_{M,w}[M(f(w)) = y \text{ with } f(y) = f(w)] \leq n^{-k} \) for every PPTM \(M \), every \(k \), sufficiently large \(n \), and \(w \in \Sigma^n \)

We only have some \(y \), not \(y = w \), since \(f \) need not be injective. # Candidates for One-Way Functions
Existence of one-way functions unknown.
Would imply \(\text{NP} \not\subseteq \text{BPP} \) and thus \(\text{P} \neq \text{NP} \).

Public-Key Cryptosystems

Public key \(E \) (encryption key)
publicized, needs to be bound to user (certificate)
Private key \(D \) (decryption key)
Encrypt: with public key of recipient.
Only recipient can decrypt, \(D(E(m)) = m \)
Trapdoor Functions

Indexing function: convert family of functions \(\{f_i\} \) with \(i \in \Sigma^* \) to a single function \(f(i, w) = f_i(w), f : \Sigma^* \times \Sigma^* : \Sigma^* \).

Trapdoor function: easy to invert with extra info, hard without. \(f : \Sigma^* \times \Sigma^* : \Sigma^* \), with additional PPTM \(G \) and function \(h : \Sigma^* \times \Sigma^* : \Sigma^* \), such that

1. \(f \) and \(h \) computable in polynomial time
2. \(\Pr_{E,w}[E(i, f_i(w)) = y \text{ with } f_i(y) = f_i(w)] \leq n^{-k} \) for every PPTM \(E \), every \(k \), sufficiently large \(n \), random \(w \in \Sigma^n \), and random output \((i, t) \) of \(G \) on \(1^n \).
3. For every \(n, w \in \Sigma^n \), and every non-zero probability output \((i, t) \) of \(G \) on some input, \(h(t, f_i(w)) = y \), where \(f_i(y) = f_i(w) \)

\(G \) generates index \(i \) and trapdoor \(t \) that allows inverting \(f_i \) (note that in (2), the trapdoor \(t \) is unavailable)

Trapdoor example: RSA

Key generation:

choose \(n \)-bit primes \(p, q \) (random numbers, test for primality)

compute \(n = pq \) and Euler totient \(\phi(n) = (p - 1)(q - 1) \) (count of numbers < \(n \) and relatively prime to \(n \))

choose encryption exponent \(1 < e < \phi(n) \), relatively prime to \(\phi(n) \)

compute inverse \(d \), \(de \equiv 1 \pmod{\phi(n)} \).

public key: \((n, e) \) private key: \(d \).

Formally, PPTM \(G \) outputs \(((n, e), d) \)

Encryption: \(f_{n,e}(w) = w^e \pmod{n} \)

Decryption: \(h(d, x) = x^d \pmod{n} \)

Reason: \((w^e)^d = w^{de} = w \pmod{n} \) because \(de \equiv 1 \pmod{\phi(n)} \)

(from Euler’s theorem and Chinese Remainder Theorem)