	Review: Interactive Proofs
	Interactive Proofs = Prover (not trustworthy) + Verifier (poly-time)
COMPSCI 501: Formal Language Theory	Verifier V : three inputs, outputs new message m_{i+1}
Lecture 37: IP = PSPACE Marius Minea marius@cs.umass.edu	 Input string w: decide w ∈ A or not. Random input: like probabilistic choice (bits from coin flips) Message history: new choice based on past dialog m₁#m₂##m_i Output: next message m_{i+1} (to prover), or accept, or reject
University of Massachusetts Amherst 26 April 2019	Prover P: takes only input and message history (private coin)
	A language A is in IP if there exists a verifier (polynomially computable function) V such that for evey string w
	1. for some function P , $w \in A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \ge \frac{2}{3}$ 2. for any function \tilde{P} , $w \notin A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \le \frac{1}{3}$
	We've seen $IP \subseteq PSPACE$ (construct "most convincing" prover)
A Simpler Problem: Counting Satisfying Assignments	A Deterministic Protocol
	Recall input: $\langle \phi, k angle$
$\#$ SAT = { $\langle \phi, k \rangle \mid \phi$ is a CNF formula with exactly k satisfuying	Phase 0: $P \rightarrow V$: $f_0()$ V checks $k = f_0()$, rejects if not.
Let's prove SAT \in IP.	Phase 1: $P \rightarrow V$: $f_1(0), f_1(1)$ V checks $f_0() = f_1(0) + f_1(1)$, rejects if not.
Idea: let prover provide truth count, and then "probe" deeper, for truth assignments of <i>one</i> variable. Define $f_i(a_i, \dots, a_i) = SAT$ -count of ϕ with first <i>i</i> variables fixed:	Phase 2: $P \rightarrow V$: $f_2(0,0), f_2(0,1), f_2(1,0), f_2(1,1)$ V checks $f_1(0) = f_2(0,0) + f_2(0,1), f_1(1) = f_2(1,0) + f_2(1,1),$ rejects if not.
$x_1 = a_1, \dots, x_i = a_i$. Our count is $f_0()$.	What is the problem?
Then $f_i(a_1, \ldots a_i) = f_{i+1}(a_1, \ldots, a_i, 0) + f_{i+1}(a_1, \ldots, a_i, 1).$	Size of input grows exponentially \implies EXPTIME to process them
	However, protocol is correct. Honest prover will lead to accept. Prover dishonest on some f_i needs to lie on one of two f_{i+1} values \implies will be caught in the end.
Introducing Randomness	Arithmetization of Formulas
What if we check the prover's answer on one of the branches?	Checking for booleans does not provide sufficient info.
Random bitstring: $r_1r_2r_m$.	Assign polynomial $p(x_1, x_2, \dots, x_m)$ to formula ϕ so it evaluates
Phase 0: $P \rightarrow V$: $f_0()$ V checks $k = f_0()$, <i>rejects</i> if not.	the same on booleans. $p(x_i) = x_i$
Phase 1: $P \rightarrow V$: $f_1(0), f_1(1)$ V checks $f_0() = f_1(0) + f_1(1)$, rejects if not, else sends r_1	$ \begin{vmatrix} p(\neg \alpha) = 1 - p(\alpha) \\ p(\alpha \land \beta) = p(\alpha) \cdot p(\beta) \end{vmatrix} $
Phase 2: $P \rightarrow V$: $f_2(r_1, 0), f_2(r_1, 1)$ V checks $f_1(r_1) = f_1(r_1, 0) + f_1(r_1, 1)$, rejects if not, else sends r_2	Define \lor consistent with \neg , \lor : DeMorgan rules: $p(\alpha \lor \beta) = p(\neg(\neg \alpha \land \neg \beta)) = 1 - (1 - p(\alpha))(1 - p(\beta))$
What is the probability of catching a dishonest prover?	Important: degree grows polynomially (\land , \lor : sum of degrees).
Does not work.	Also redefine functions f_i as polynomials.

New Protocol for #SAT

Random sequence $r_1r_2\ldots r_m$, each from (large) field ${\cal F}$

Phase 0: $P \rightarrow V$: $f_0()$ V checks $k = f_0()$, rejects if not.

Phase 1: $P \rightarrow V$: polynomial $f_1(z)$ (coefficients) V checks $f_0() = f_1(0) + f_1(1)$, rejects if not, else sends r_1

Phase 2: $P \rightarrow V$: polynomial $f_2(r_1, z)$ (coefficients) V checks $f_1(r_1) = f_1(r_1, 0) + f_1(r_1, 1)$, rejects if not, else sends r_2 Does this decide #SAT? Clearly accept if prover P is honest.

IP protocol for #ST: Analysis

If value $\tilde{f}_0()$ in Phase 0 is incorrect, then function $\tilde{f}_1(z)$ sent in Phase 1 is also incorrect. (Otherwise, sum of two correct values would not match $\tilde{f}_0()$)

Claim: For random value f_1 , $\tilde{f}_1(r_1)$ likely incorrect too.

$$\Pr[\tilde{f}_1(r_1) = f_1(r_1)] < \frac{d}{|\mathcal{F}|}$$

Degree $d \leq n$, choose field with $|\mathcal{F}| \geq 2^n$ (\mathbb{Z}_p for some prime) Then $\frac{n}{2^n} < \frac{1}{n^2}$ if $n \geq 10$.

Probability of getting lucky overall: $m\cdot \frac{1}{n^2}.$ Choosing n>m we get $<\frac{1}{n},$ can make arbitrarily small.

Thus, $\#SAT \in IP$

Finally: $PSPACE \subseteq IP$

Take PSPACE-complete language TQBF, show \in IP. (TQBF = is a quantified boolean formula a tautology?)

 $\psi = Q_1 x_1 Q_2 x_2 \cdot Q_m x_m[\phi] \qquad Q_i \text{ are } \forall \text{ or } \exists$

Again, define $f_i(a_1, a_2, \dots a_i)$ fixing $a_1, a_2, \dots a_m$ (other quantifiers remain \implies value is 1 or 0).

Arithmetization for quantifiers:

 $\begin{array}{l} p(\forall x f(x)) = p(f(0)) \cdot p(f(1)) \\ p(\exists x f(x)) = p(\neg \forall x \neg f(x)) = 1 - (1 - p(f(0))) \cdot (1 - p(f(1))) \end{array}$

Problem: degree squares at each quantifier!

Size n formula: $D(n) = D(n/2)^2$ solves to? $D(n) = 2^n$ exponential

Avoiding Exponential Blowup

Linearization: $x^k = x$ for $x \in \{0, 1\}$. \implies instead of multiplication, use $L_i(p) = x_i p(x_1, \dots, 1, \dots, x_m) + (1 - x_i) p(x_1, \dots 0, \dots, x_m)$ Linearize between rounds on each variable to get equivalent form. Protocol rounds: check product for f_i (\forall) or $1 - f_i$ (\exists) Choose field \mathcal{F} of size $\geq n^4$ in formula size n. $O(n^2)$ rounds, degree $\leq n$, cheating probability $\leq \frac{n \cdot n^2}{n^4} = \frac{1}{n}$