
COMPSCI 501: Formal Language Theory
Lecture 37: IP = PSPACE

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

26 April 2019

Review: Interactive Proofs
Interactive Proofs = Prover (not trustworthy) + Verifier (poly-time)

Verifier V : three inputs, outputs new message mi+1

1. Input string w: decide w ∈ A or not.
2. Random input: like probabilistic choice (bits from coin flips)
3. Message history: new choice based on past dialog
m1#m2# . . .#mi

Output: next message mi+1 (to prover), or accept, or reject

Prover P : takes only input and message history (private coin)

A language A is in IP if there exists a verifier (polynomially
computable function) V such that for evey string w

1. for some function P , w ∈ A =⇒ Pr[V ↔P accepts w] ≥ 2
3

2. for any function P̃ , w /∈ A =⇒ Pr[V ↔P accepts w] ≤ 1
3

We’ve seen IP ⊆ PSPACE (construct “most convincing” prover)

A Simpler Problem: Counting Satisfying Assignments

#SAT = {〈φ, k〉 | φ is a CNF formula with exactly k satisfuying
assignments}
Let’s prove SAT ∈ IP.

Idea: let prover provide truth count, and then “probe” deeper, for
truth assignments of one variable.

Define fi(a1, . . . ai) = SAT-count of φ with first i variables fixed:
x1 = a1, . . . xi = ai. Our count is f0().

Then fi(a1, . . . ai) = fi+1(a1, . . . , ai, 0) + fi+1(a1, . . . , ai, 1).

A Deterministic Protocol
Recall input: 〈φ, k〉
Phase 0: P → V : f0()
V checks k = f0(), rejects if not.

Phase 1: P → V : f1(0), f1(1)
V checks f0() = f1(0) + f1(1), rejects if not.

Phase 2: P → V : f2(0, 0), f2(0, 1), f2(1, 0), f2(1, 1)
V checks f1(0) = f2(0, 0) + f2(0, 1), f1(1) = f2(1, 0) + f2(1, 1),
rejects if not.

. . . What is the problem?

Size of input grows exponentially =⇒ EXPTIME to process them

However, protocol is correct. Honest prover will lead to accept.
Prover dishonest on some fi needs to lie on one of two fi+1 values
=⇒ will be caught in the end.

Introducing Randomness

What if we check the prover’s answer on one of the branches?

Random bitstring: r1r2 . . . rm.

Phase 0: P → V : f0()
V checks k = f0(), rejects if not.

Phase 1: P → V : f1(0), f1(1)
V checks f0() = f1(0) + f1(1), rejects if not, else sends r1

Phase 2: P → V : f2(r1, 0), f2(r1, 1)
V checks f1(r1) = f1(r1, 0) + f1(r1, 1), rejects if not, else sends r2

What is the probability of catching a dishonest prover?

Does not work.

Arithmetization of Formulas

Checking for booleans does not provide sufficient info.

Assign polynomial p(x1, x2, . . . , xm) to formula φ so it evaluates
the same on booleans.

p(xi) = xi

p(¬α) = 1− p(α)
p(α ∧ β) = p(α) · p(β)

Define ∨ consistent with ¬, ∨: DeMorgan rules:
p(α ∨ β) = p(¬(¬α ∧ ¬β)) = 1− (1− p(α))(1− p(β))

Important: degree grows polynomially (∧, ∨: sum of degrees).

Also redefine functions fi as polynomials.



New Protocol for #SAT

Random sequence r1r2 . . . rm, each from (large) field F
Phase 0: P → V : f0()
V checks k = f0(), rejects if not.

Phase 1: P → V : polynomial f1(z) (coefficients)
V checks f0() = f1(0) + f1(1), rejects if not, else sends r1

Phase 2: P → V : polynomial f2(r1, z) (coefficients)
V checks f1(r1) = f1(r1, 0) + f1(r1, 1), rejects if not, else sends r2

Does this decide #SAT? Clearly accept if prover P is honest.

IP protocol for #ST: Analysis

If value f̃0() in Phase 0 is incorrect, then function f̃1(z) sent in
Phase 1 is also incorrect.
(Otherwise, sum of two correct values would not match f̃0())

Claim: For random value f1, f̃1(r1) likely incorrect too.

Pr[f̃1(r1) = f1(r1)] < d

|F|
Degree d ≤ n, choose field with |F| ≥ 2n (Zp for some prime)
Then n

2n < 1
n2 if n ≥ 10.

Probability of getting lucky overall: m · 1
n2 .

Choosing n > m we get < 1
n , can make arbitrarily small.

Thus, #SAT ∈ IP

Finally: PSPACE ⊆ IP

Take PSPACE-complete language TQBF, show ∈ IP.
(TQBF = is a quantified boolean formula a tautology?)

ψ = Q1x1Q2x2 ·Qmxm[φ] Qi are ∀ or ∃
Again, define fi(a1, a2, . . . ai) fixing a1, a2, . . . am

(other quantifiers remain =⇒ value is 1 or 0).

Arithmetization for quantifiers:

p(∀xf(x)) = p(f(0)) · p(f(1))
p(∃xf(x)) = p(¬∀x¬f(x)) = 1− (1− p(f(0))) · (1− p(f(1)))

Problem: degree squares at each quantifier!

Size n formula: D(n) = D(n/2)2 solves to? D(n) = 2n exponential

Avoiding Exponential Blowup

Linearization: xk = x for x ∈ {0, 1}.
=⇒ instead of multiplication, use

Li(p) = xip(x1, . . . , 1, . . . , xm) + (1− xi)p(x1, . . . 0, . . . , xm)

Linearize between rounds on each variable to get equivalent form.

Protocol rounds: check product for fi (∀) or 1− fi (∃)

Choose field F of size ≥ n4 in formula size n.

O(n2) rounds, degree ≤ n, cheating probability ≤ n·n2

n4 = 1
n


