Motivation

- NP is based on polynomial-time verifiers (short witness) limited capacity of verifier
- Think of two entities:
 - Prover: produces witness (unlimited power; may be hard to find)
 - Verifier: checks witness (must be efficient)
- Assymmetry of YES vs. NO
- NP: easy check for YES, often no easy check for NO
- coNP probably (?) different from NP
- Interactive Proofs: give more power to verifier
 - two-way dialog
 - allow probabilistic conclusion
 - but: prover may be dishonest, verifier must cope

Graph (Non)Isomorphism

Natural problem, complexity unknown: in P (?), NP-complete (?)
ISO = \{(G_1, G_2) | G_1 and G_2 are isomorphic graphs\}
NONISO = \{(G_1, G_2) | G_1 and G_2 are not isomorphic graphs\}
Verifier chooses one of G_1, G_2, reorders nodes into H.
Sends to Prover, asks to tell if G_1 or G_2.

Defining Outcome

Def. A language \(A \) is in IP if there exists a verifier (polynomially computable function) \(V \) such that for every string \(w \)

1. for some function \(P \), \(w \in A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \geq \frac{2}{3} \)
2. for any function \(P \), \(w \notin A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \leq \frac{1}{3} \)
 - some (honest) prover \(P \) can produce likely correct accept
 - no (dishonest?) prover \(P \) can produce likely incorrect accept

Can use amplification to make error probability arbitrarily small.

BPP ? IP BPP \(\subseteq \) IP (need no \(P \) / ignore)

NP ? IP NP \(\subseteq \) IP (never wrongly accepts, try often enough)

We’ll prove IP = PSPACE (Shamir’s Theorem)

IP \(\subseteq \) PSPACE

Simulate an interactive proof in polynomial space

Assume: \(p = p(n) \) messages of length \(\leq p(n) \) exchanged

Choose prover maximizing accept probability for input \(w \)

\[\Pr[V \text{ accepts } w] = \max_P \Pr[V \leftrightarrow P \text{ accepts } w] \]

At least \(\frac{2}{3} \) for \(w \in A \), at most \(\frac{1}{3} \) for \(w \notin A \)

Parameterize interaction with initial message sequence \(M_j = m_1 \# m_2 \# \ldots \# m_j \)

Consider probability \(\Pr[V \leftrightarrow P \text{ accepts } w \text{ starting at } M_j] \) over all random strings \(r \) consistent with \(M_j \). Define:

\[\Pr[V \text{ acc. } w \text{ start at } M_j] = \max_P \Pr[V \leftrightarrow P \text{ acc. } w \text{ start at } M_j] \]
Computing Accept Probability, Bottom-Up

Why choose max prover for both accept and reject?
- best case for accept (want some proof of acceptance)
- worst case for reject (max. chance to deceive)

Compute values starting with complete histories M_p of p messages.

- $N_{M_p} = 1$ if $m_p = \text{accept}$ and M_p consistent with some random r
- $N_{M_p} = 0$ otherwise

$N_{M_j} = \begin{cases}
\max_{m_{j+1}} N_{M_{j+1}} & j \text{ odd (provers turn)} \\
\text{wt-avg}_{m_{j+1}} N_{M_{j+1}} & j \text{ even (verifiers turn)}
\end{cases}$

weighted average of $N_{M_{j+1}}$ by probability of verifier sending m_{j+1}
(eliminate random values r causing output inconsistent with M_j)

Claim: $N_{M_0} = \Pr[V \text{ accepts } w]$

Inductive Proof for Accept Probability

Claim: for $0 \leq j \leq p$, $N_{M_j} = \Pr[V \text{ accepts } w \text{ starting at } M_j]$

Base case: $j = p$, $\Pr = 1$ for $m_p = \text{accept}$, 0 otherwise

Inductive step (from V to P):

$N_{M_j} = \sum_{m_{j+1}} \Pr[V(w, r, M_j) = m_{j+1}] \cdot N_{M_{j+1}}$

from P to V:

$N_{M_j} = \max_{m_{j+1}} N_{M_{j+1}}$

$= \max_{m_{j+1}} \Pr[V \text{ acc. } w \text{ start at } M_{j+1}]$

$= \Pr[V \text{ acc. } w \text{ start at } M_j]$

(message w/ max. prob. in line 2 must be same as max. for line 1)