	Motivation
COMPSCI 501: Formal Language Theory. Lecture 36: Interactive ProofsMarius Minea marius@cs.umass.eduUniversity of Massachusetts Amherst	 NP is based on polynomial-time verifiers (short witness) limited capacity of verifier Think of two entities: Prover: produces witness (unlimited power; may be hard to find) Verifier: checks witness (must be efficient) Assymmetry of YES vs. NO NP: easy check for YES, often no easy check for NO coNP probably(?) different from NP Interactive Proofs: give more power to verifier two-way dialog allow probabilistic conclusion but: prover may be dishonest, verifier must cope
Graph (Non)Isomorphism Natural problem, complexity unknown: in P (??), NP-complete (??) $ISO = \{\langle G_1, G_2 \rangle \mid G_1 \text{ and } G_2 \text{ are isomorphic graphs}\}$ $NONISO = \{\langle G_1, G_2 \rangle \mid G_1 \text{ and } G_2 \text{ are not isomorphic graphs}\}$ Verifier chooses one of G_1 , G_2 , reorders nodes into H . Sends to Prover, asks to tell if G_1 or G_2 .	Model DefinitionVerifier (function V): three inputs1. Input string w: decide $w \in A$ or not.2. Random input: like probabilistic choice (bits from coin flips)3. Message history: new choice based on past dialog $m_1 \# m_2 \# \dots \# m_i$ Output: next message m_{i+1} (to prover), or accept, or reject $V \xrightarrow{m_{2k+1}} P$ (odd messages)Prover (function P): takes1. input w2. message history $m_1 \# m_2 \# \dots \# m_i$ Output next message m_{i+1} $V \xleftarrow{m_{2k}} P$ (even messages)Denote this interaction by $V \leftrightarrow P$.
Defining Outcome Def. A language A is in IP if there exists a verifier (polynomially computable function) V such that for every string w 1. for some function P, $w \in A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \ge \frac{2}{3}$ 2. for any function $\tilde{P}, w \notin A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \le \frac{1}{3}$ \triangleright some (honest) prover P can produce likely correct accept \triangleright no (dishonest?) prover \tilde{P} can produce likely incorrect accept Can use amplification to make error probability arbitrarily small. BPP ? IP BPP \subseteq IP (need no P/ ignore) NP ? IP NP \subseteq IP (never wrongly accepts, try often enough) We'll prove IP = PSPACE (Shamir's Theorem)	$\begin{array}{l} IP \subseteq PSPACE \\ & \text{Simulate an interactive proof in polynomial space} \\ & \text{Assume: } p = p(n) \text{ messages of length } \leq p(n) \text{ exchanged} \\ & \text{Choose prover maximizing accept probability for input } w \\ & \Pr[V \text{ accepts } w] = \max_{P} \Pr[V \leftrightarrow P \text{ accepts } w] \\ & \text{At least } \frac{2}{3} \text{ for } w \in A, \text{ at most } \frac{1}{3} \text{ for } w \notin A \\ & \text{Parameterize interaction with initial message sequence} \\ & M_j = m_1 \# m_2 \# \dots \# m_j \\ & \text{Consider probability } \Pr[V \leftrightarrow P \text{ accepts } w \text{ starting at } M_j] \\ & \text{over all random strings } r \text{ consistent with } M_j. \text{ Define:} \\ & \Pr[V \text{ acc. } w \text{ start.at } M_j] = \max_{P} \Pr[V \leftrightarrow P \text{ acc. } w \text{ start.at } M_j] \end{array}$

Computing Accept Probability, Bottom-Up

Why choose max prover for both accept and reject?

- best case for accept (want some proof of acceptance)
- worst case for reject (max. chance to deceive)

Compute values starting with complete histories M_p of p messages.

 $N_{M_p}=1 \mbox{ if } m_p = \mbox{accept}$ and M_p consistent with some random r $N_{M_p}=0$ otherwise

 $N_{M_j} = \left\{ \begin{array}{ll} \max_{m_{j+1}} N_{M_{j+1}} & j \text{ odd (prover's turn)} \\ \text{wt-avg}_{m_{j+1}} N_{M_{j+1}} & j \text{ even (verifier's turn)} \end{array} \right.$

weighted average of $N_{M_{j+1}}$ by probability of verifier sending m_{j+1} (eliminate random values r causing output inconsistent with M_j)

Claim: $N_{M_0} = \Pr[V \text{ accepts } w]$

Inductive Proof for Accept Probability

Claim: for $0 \leq j \leq p$, $N_{M_j} = \Pr[V \text{ accepts } w \text{ starting at } M_j]$

Base case: j = p, Pr = 1 for $m_p = accept$, 0 otherwise

Inductive step (from V to P):

$$\begin{array}{ll} N_{M_j} &= \sum_{m_{j+1}} \Pr[V(w,r,M_j) = m_{j+1}] \cdot N_{M_{j+1}} \\ &= \sum_{m_{j+1}} \Pr[V(w,r,M_j) = m_{j+1}] \cdot \Pr[V \text{ acc. } w \text{ start.at } M_{j+1}] \\ &= \Pr[V \text{ acc. } w \text{ start.at } M_j] \end{array}$$

from \boldsymbol{P} to $\boldsymbol{V}:$

$$\begin{array}{ll} N_{M_j} &= \max_{m_{j+1}} N_{M_{j+1}} \\ &= \max_{m_{j+1}} \Pr[V \text{ acc. } w \text{ start.at } M_{j+1}] \\ &= \Pr[V \text{ acc. } w \text{ start.at } M_j] \end{array}$$

(message w/ max. prob. in line 2 must be same as max. for line 1)