Model Definition

Verifier (function V): three inputs
1. Input string w: decide $w \in A$ or not.
2. Random input: like probabilistic choice (bits from coin flips)
3. Message history: new choice based on past dialog
 $m_1#m_2#\ldots#m_i$

Output: next message m_{i+1} (to prover), or accept, or reject
$V \overset{m_{i+1}}{\leftarrow P}$ (odd messages)

Prover (function P): takes
1. input w
2. message history $m_1#m_2#\ldots#m_i$

Output next message m_{i+1}
$V \overset{p_{i+1}}{\rightarrow P}$ (even messages)

Denote this interaction by $V \leftrightarrow P$.

Defining Outcome

Def. A language A is in IP if there exists a verifier (polynomially computable function) V such that for every string w
1. for some function P, $w \in A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \geq \frac{2}{3}$
2. for any function P, $w \notin A \implies \Pr[V \leftrightarrow P \text{ accepts } w] \leq \frac{1}{3}$
 - some (honest) prover P can produce likely correct accept
 - no (dishonest?) prover P can produce likely incorrect accept

Can use amplification to make error probability arbitrarily small.

$\text{BPP} \subseteq \text{IP}$ $\text{BPP} \subseteq \text{IP}$ (need no P/ignore)

$\text{NP} \subseteq \text{IP}$ $\text{NP} \subseteq \text{IP}$ (never wrongly accepts, try often enough)

We’ll prove $\text{IP} = \text{PSPACE}$ (Shamir’s Theorem)

Motivation

- NP is based on polynomial-time verifiers (short witness)
 limited capacity of verifier
- Think of two entities:
 - Prover produces witness (unlimited power; may be hard to find)
 - Verifier checks witness (must be efficient)
- Assymmetry of YES vs. NO
 NP: easy check for YES, often no easy check for NO
 coNP probably (?) different from NP
- Interactive Proofs: give more power to verifier
 - two-way dialog
 - allow probabilistic conclusion
 - but: prover may be dishonest, verifier must cope

Graph (Non)Isomorphism

Natural problem, complexity unknown: in P (?), NP-complete (??)
$\text{ISO} = \{(G_1, G_2) \mid G_1$ and G_2 are isomorphic graphs\}$
$\text{NONISO} = \{(G_1, G_2) \mid G_1$ and G_2 are not isomorphic graphs\}$

Verifier chooses one of G_1, G_2, reorders nodes into H.
Sends to Prover, asks to tell if G_1 or G_2.

IP \subseteq PSPACE

Simulate an interactive proof in polynomial space

Assume: $p = p(n)$ messages of length $\leq p(n)$ exchanged
Choose prover maximizing accept probability for input w
$\Pr[V \text{ accepts } w] = \max_P \Pr[V \leftrightarrow P \text{ accepts } w]$

At least $\frac{2}{3}$ for $w \in A$, at most $\frac{1}{3}$ for $w \notin A$

Parameterize interaction with initial message sequence $M_j = m_1#m_2#\ldots#m_j$
Consider probability $\Pr[V \leftrightarrow P \text{ accepts } w \text{ starting at } M_j]$ over all random strings r consistent with M_j.
Define:
$\Pr[V \text{ acc. } w \text{ start at } M_j] = \max_P \Pr[V \leftrightarrow P \text{ acc. } w \text{ start at } M_j]$
Computing Accept Probability, Bottom-Up

Why choose max prover for both accept and reject?
- best case for accept (want some proof of acceptance)
- worst case for reject (max. chance to deceive)

Compute values starting with complete histories M_p of p messages.

$N_{M_p} = 1$ if $m_p = \text{accept}$ and M_p consistent with some random r
$N_{M_p} = 0$ otherwise

N_{M_j} = \[\begin{cases} \max_{m_{j+1}} N_{M_{j+1}} & j \text{ odd (prover’s turn)} \\ \text{wt-avg} m_{j+1} N_{M_{j+1}} & j \text{ even (verifier’s turn)} \end{cases} \]

weighted average of $N_{M_{j+1}}$ by probability of verifier sending m_{j+1} (eliminate random values r causing output inconsistent with M_j)

Claim: $N_{M_0} = Pr[V \text{ accepts } w]$