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Review: Probabilistic Complexity Classes

BPP (bounded error): accepts/rejects with error probability ε < 1/2

Amplification lemma: can make error 2−p(n) for any polynomial

RP (randomized poly-time): always rejects when it should
re-runs make acceptance error arbitrarily small

coRP: always accepts when it should

Clearly RP ⊆ BPP (reject error is zero), likewise coRP ⊆ BPP

P ⊆ RP: no nondeterminism, always right answer

RP ⊆ NP: NTM needs no coin, guesses correct path

BPP ? NP (no relation is known). It it believed that P = BPP.

Polynomial identity testing (last lecture) is in coRP, unknown if in P.

Alternation
Def. Alternating Turing machine = nondeterministic TM with
two types of states (in addition to qacc, qrej):
I universal states (AND, ∧) accepts if all successors do
I existential states (OR, ∨) accepts if some successor does

We’ve seen this in AND-OR games

Very powerful model of computation
AND / OR need not strictly alternate
Will refine hierarchy
based on number of alternations
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if all or any of its children accept. We define an alternating Turing machine as
follows.

DEFINITION 10.16

An alternating Turing machine is a nondeterministic Turing ma-
chine with an additional feature. Its states, except for qaccept and
qreject, are divided into universal states and existential states. When
we run an alternating Turing machine on an input string, we label
each node of its nondeterministic computation tree with ∧ or ∨,
depending on whether the corresponding configuration contains a
universal state or an existential state. We designate a node to be
accepting if it is labeled with ∧ and all of its children are accepting,
or if it is labeled with ∨ and any of its children are accepting. The
input is accepted if the start node is designated accepting.

The following figure shows nondeterministic and alternating computation
trees. We label the nodes of the alternating computation tree with ∧ or ∨ to
indicate which function of their children they compute.

FIGURE 10.17

Nondeterministic and alternating computation trees
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Alternating Time and Space Complexity

ATIME(t(n)) = {L | L decided by O(t(n)) time alternating TM}

ASPACE(f(n)) = {L decided by O(f(n)) space alternating TM}

AP: alternating polynomial time

APSPACE: alternating polynomial space

AL: alternating logarithmic space

Example: Tautology

TAUT = {φ that evaluates to true on all variable assignments}
φ tautology ⇔ ¬φ not satisfiable.

=⇒ TAUT ∈ coNP (in fact, coNP-complete)

TAUT is in AP:

1. universally select all truth assignments compare:
existentially select one assignment for SAT

2. (next level) evaluate assignment
3. accept/reject depending on assignment

Will reject if at least one assignment rejects.

By same principle, every coNP problem is in AP

MIN-FORMULA

A Boolean formulas is minimal if there is no shorter formula
equivalent to it.

Can decide MIN-FORMULA in AP:

1. universally select all formulas ψ shorter than φ
doable, levels of choices = length of formula - 1

2. existentially select a truth assignment
3. evaluate φ and ψ
4. accept if different, reject if same

Accepts if for all shorter formulas, some assignment differs



Space-Time Connections

(1) ATIME(f(n)) ⊆ SPACE(f(n)) ⊆ ATIME(f2(n)) for f(n) ≥ n

(2) ASPACE(f(n)) = TIME(2O(f(n))) for f(n) ≥ logn

Consequences:

AL = P (2), f(n) = logn

AP = PSPACE (1), f(n) = poly(n)

APSPACE = EXPTIME (2), f(n) = poly(n)

Proof: ATIME(f(n)) ⊆ SPACE(f(n)) for f(n) ≥ n

Simulate alternating O(f(n)) time in deterministic O(f(n)) space.

Check acceptance in computation, observing AND/OR rules.

Recursive DFS.

Naive: O(f(n) depth, O(f(n)) space / config. =⇒ O(f2(n))

Efficient: keep encoding of choices at each level.
=⇒ constant space per level (bounded branching)

Improved space: O(f(n))

Proof: SPACE(f(n)) ⊆ ATIME(f 2(n)) for f(n) ≥ n

Simulate O(f(n)) space in alternating O(f2(n)) time.

Suggests Savitch’s theorem. Recall:

YIELD(c1, c2, t): go from config. c1 to c2 within t steps

1. existentially chooses intermediate cm

2. universally evaluate YIELD(c1, cm, t/2) and
YIELD(cm, c2, t/2)

3. recurse

Space O(f(n)) =⇒ at most 2df(n) configurations for some d
Initial call with t = df(n).

Time used: O(f(n)) to generate/write configuration at each level
Recursion depth: log 2df(n) = O(f(n)). =⇒ total O(f2(n))

Proof: ASPACE(f(n)) ⊆ TIME(2O(f(n))) for f(n) ≥ log n

Simulate alternating O(f(n)) space in deterministic 2O(f(n)) time

Construct configuration graph – space df(n) per configuration.
=⇒ 2O(f(n)) configurations

Repeatedly mark accepting configurations bottom up
(reverse topological order)

Each scan takes 2O(f(n)) time (bounded node degree)

Each scan markes some new node (else done) =⇒ 2O(f(n)) scans

Time complexity: 2O(f(n)) · 2O(f(n)) = 2O(f(n))

Proof: ASPACE(f(n)) ⊇ TIME(2O(f(n))) for f(n) ≥ log n

“⇐” Simulate 2O(f(n)) time in alternating O(f(n)) space

Concept: tableau of configurations, 2O(f(n)) × 2O(f(n))

Can’t store tableau, must only store pointers.
one pointer: size log 2O(f(n)) = O(f(n)).

Alternation allows guess & verify without retaining stack!

Top-level: check if lower-left corner can be accepting

1. existentially guess contents of (three) cell parents
check they match transition relation

2. universally branch to check the parents

Space needed is just one pointer to next cell =⇒ O(f(n))

Polynomial Time Hierarchy

Defines hierarchy within AP = PSPACE, by bounding number of
alternations between ∧ and ∨.
Σi alternating TM: at most i runs of existential or universal steps,
starting with existential steps.

Πi alternating TM: at most i runs of existential or universal steps,
starting with universal steps.

ΣiP =
⋃

k

ΣiTIME(nk) ΠiP =
⋃

k

ΠiTIME(nk)

PH = ⋃
i ΣiP = ⋃

i ΠiP

P = Σ0P = Π0P (no nondeterminism, no alternation)

NP = Σ1P, coNP = Π1P.


