	7
	Review: Probabilistic Complexity Classes
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	BPP (bounded error): accepts/rejects with error probability $\epsilon < 1/2$ Amplification lemma: can make error $2^{-p(n)}$ for any polynomial RP (randomized poly-time): always <i>rejects</i> when it should re-runs make acceptance error arbitrarily small coRP : always <i>accepts</i> when it should Clearly RP \subseteq BPP (reject error is zero), likewise coRP \subseteq BPP P \subseteq RP : no nondeterminism, always right answer RP \subseteq NP : NTM needs no coin, guesses correct path BPP ? NP (no relation is known). It it believed that P = BPP . Polynomial identity testing (last lecture) is in coRP, unknown if in P.
Alternation <i>Def.</i> Alternating Turing machine = nondeterministic TM with two types of states (in addition to q_{acc} , q_{rej}):	Alternating Time and Space Complexity
 ▶ universal states (AND, ∧) accepts if <i>all</i> successors do 	
▶ existential states (OR, \lor) accepts if <i>some</i> successor does	$ATIME(t(n)) = \{L \mid L \text{ decided by } O(t(n)) \text{ time alternating TM} \}$
We've seen this in AND-OR games Very powerful model of computation AND / OR need not strictly alternate Will refine hierarchy based on number of alternations	 ASPACE(f(n)) = {L decided by O(f(n)) space alternating TM} AP: alternating polynomial time APSPACE: alternating polynomial space AL: alternating logarithmic space
Example: Tautology	MIN-FORMULA
 TAUT = {φ that evaluates to true on all variable assignments} φ tautology ⇔ ¬φ not satisfiable. ⇒ TAUT ∈ coNP (in fact, coNP-complete) TAUT is in AP: universally select all truth assignments compare: existentially select one assignment for SAT (next level) evaluate assignment accept/reject depending on assignment Will reject if at least one assignment rejects. By same principle, every coNP problem is in AP 	 A Boolean formulas is <i>minimal</i> if there is no shorter formula equivalent to it. Can decide <i>MIN-FORMULA</i> in AP: universally select all formulas ψ shorter than φ doable, levels of choices = length of formula - 1 existentially select a truth assignment evaluate φ and ψ accept if different, reject if same Accepts if for <i>all</i> shorter formulas, <i>some</i> assignment differs

Space-Time Connections	Proof: ATIME($f(n)$) \subseteq SPACE($f(n)$) for $f(n) \ge n$
(1) ATIME $(f(n)) \subseteq$ SPACE $(f(n)) \subseteq$ ATIME $(f^{2}(n))$ for $f(n) \ge n$ (2) ASPACE $(f(n)) =$ TIME $(2^{O(f(n))})$ for $f(n) \ge \log n$ Consequences: AL = P (2), $f(n) = \log n$ AP = PSPACE (1), $f(n) = poly(n)$ APSPACE = EXPTIME (2), $f(n) = poly(n)$	Simulate alternating $O(f(n))$ time in deterministic $O(f(n))$ space. Check acceptance in computation, observing AND/OR rules. Recursive DFS. Naive: $O(f(n)$ depth, $O(f(n))$ space / config. $\implies O(f^2(n))$ Efficient: keep encoding of choices at each level. \implies constant space per level (bounded branching) Improved space: $O(f(n))$
Proof: SPACE($f(n)$) \subseteq ATIME($f^2(n)$) for $f(n) \ge n$	Proof: ASPACE $(f(n)) \subseteq \text{TIME}(2^{O(f(n))})$ for $f(n) \ge \log n$
Simulate $O(f(n))$ space in alternating $O(f^2(n))$ time. Suggests Savitch's theorem. Recall: YIELD (c_1, c_2, t) : go from config. c_1 to c_2 within t steps 1. existentially chooses intermediate c_m 2. universally evaluate YIELD $(c_1, c_m, t/2)$ and YIELD $(c_m, c_2, t/2)$ 3. recurse Space $O(f(n)) \implies$ at most $2^{df(n)}$ configurations for some d Initial call with $t = df(n)$. Time used: $O(f(n))$ to generate/write configuration at each level Recursion depth: $\log 2^{df(n)} = O(f(n))$. \implies total $O(f^2(n))$	Simulate alternating $O(f(n))$ space in deterministic $2^{O(f(n))}$ time Construct configuration graph – space $df(n)$ per configuration. $\implies 2^{O(f(n))}$ configurations Repeatedly mark accepting configurations bottom up (reverse topological order) Each scan takes $2^{O(f(n))}$ time (bounded node degree) Each scan markes some new node (else done) $\implies 2^{O(f(n))}$ scans Time complexity: $2^{O(f(n))} \cdot 2^{O(f(n))} = 2^{O(f(n))}$
Proof: ASPACE($f(n)$) \supseteq TIME($2^{O(f(n))}$) for $f(n) \ge \log n$	Polynomial Time Hierarchy
 "⇐" Simulate 2^{O(f(n))} time in alternating O(f(n)) space Concept: tableau of configurations, 2^{O(f(n))} × 2^{O(f(n))} Can't store tableau, must only store pointers. one pointer: size log 2^{O(f(n))} = O(f(n)). Alternation allows guess & verify without retaining stack! Top-level: check if lower-left corner can be accepting 1. existentially guess contents of (three) cell parents check they match transition relation 2. universally branch to check the parents Space needed is just one pointer to next cell ⇒ O(f(n)) 	Defines hierarchy within AP = PSPACE, by bounding number of alternations between \land and \lor . Σ_i alternating TM: at most <i>i</i> runs of existential or universal steps, starting with existential steps. Π_i alternating TM: at most <i>i</i> runs of existential or universal steps, starting with universal steps. $\Sigma_i \mathbf{P} = \bigcup_k \Sigma_i \text{TIME}(n^k) \qquad \Pi_i \mathbf{P} = \bigcup_k \Pi_i \text{TIME}(n^k)$ $\mathbf{PH} = \bigcup_i \Sigma_i \mathbf{P} = \bigcup_i \Pi_i \mathbf{P}$ $\mathbf{P} = \Sigma_0 \mathbf{P} = \Pi_0 \mathbf{P}$ (no nondeterminism, no alternation) $N\mathbf{P} = \Sigma_1 \mathbf{P}$, $\operatorname{coNP} = \Pi_1 \mathbf{P}$.