
COMPSCI 501: Formal Language Theory
Lecture 34: Probabilistic Algorithms

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

19 April 2019

Outline

I Models of probabilistic acceptance
I Primality Testing
I Branching Programs
I Polynomials for Evaluation

Probabilistic Turing Machines

Def.: Nondeterministic TM with
I two branches at each nondeterminism step
I equal probabilities for both (coin flip) =⇒ Pr[b] = 2−k for

branch b with k coin flips

Acceptance: Pr[M accepts w] =
∑

accepting b

Pr[b]

Pr[M rejects w] = 1− Pr[M accepts w]

M decides language A with error probability ε if
I w ∈ A =⇒ Pr[M accepts w] ≥ 1− ε
I w /∈ A =⇒ Pr[M rejects w] ≥ 1− ε

BPP (Bounded Error Probabilistic Polynomial Time)

BPP is the class of languages decided by probabilistic polynomial
Turing machines with error probability 1/3

Choice of 1/3 is arbitrary. Anything in (0, 1/2) works.
We can make the error probability arbitrarily small.

Amplification Lemma. For any polynomial p(n), a PPTM M1 with
error probability < 1/2 has an equivalent M2 with err. prob. 2−p(n)

= arbitrary polynomial exponent, still in polynomial time

How: M2 simulates M1 2k times, takes majority decision.
Max. error prob. on one run: k right, k wrong, εk(1− ε)k.
Over all 22k result sequences: 22kεk(1− ε)k = (4ε(1− ε))k.

We want (4ε(1− ε))k ≤ 2−p(n). =⇒ k = −p(n)/ log(4ε(1− ε))

Primality Testing

Fermat’s Theorem: If a ∈ Z+
p (p prime), then ap−1 ≡ 1 (mod p)

Corollary: if a < n, and an−1 6≡ 1 (mod n), then n is not prime.

Fermat test: n passes test at a if an−1 ≡ 1 (mod n)

Pseudoprime: n passes Fermat test for all 0 < a < n. There are
non-prime numbers that pass all tests (Carmichael numbers)

Can prove: if p is not pseudoprime, it fails at least half the tests.
=⇒ run for k values ai, error bound 2−k.

Miller-Rabin Primality Testing: Square Roots of 1

1 only has square roots -1 and 1 modulo any prime p.

p prime candidate =⇒ odd =⇒ check a
p−1

2

if 6= ±1, p is not prime.
If 1, can keep dividing exponent as long as even.

Write p− 1 = s · 2t.
Choose a < p.
If ap−1 6≡ 1 (mod p), reject (p not prime)
Compute sequence as20 , as21 , as2t (mod p)
If some element 6= 1, and last such element 6= −1, reject
Repeat for k different values a =⇒ error probabiulity ≤ 2−k

Theorem: PRIMES is in BPP.



Primality Testing: Proof

I If number is rejected, it’s composite
I by Fermat’s theorem, or
I b2 ≡ 1 (mod p) =⇒ (b+ 1)(b− 1) = cp

I If number is accepted, very likely prime

Each composite non-witness has a unique corresponding witness

The Class RP

Our test had one-sided error
I accept means likely prime
I reject means surely composite

Def. RP is the class of languages decided by PPTM, where
strings in the language are accepted with probability ≥ 1/2, and
strings not in the language are rejected with probability 1.

We showed COMPOSITES ∈ RP

Another primality test (Adleman-Huang) always rejects composites,
and acccepts primes with Pr ≥ 1/2, so PRIMES ∈ RP

Branching Programs

Take Boolean decision tree, merge equivalent nodes =⇒ DAG

Def. Branching Program
I DAG, nodes are query nodes or two outputs, 0 and 1
I query nodes labeled by variables, 2 outgoing edges (yes/no)
I designated root (start) node (for evaluation)

Branching programs define the class L
(can build poly-size branching program deciding any language in L)

read-once branching program: on each path from root to 0/1,
a variable is queried at most once (not redundant)

EQROBP = {〈B1, B2〉 | B1 and B2 are equivalent read-once
branching programs}

EQROBP is in BPP

Can’t randomly choose boolean vectors, since programs might differ
only on one vector of 2m

Instead, compute polynomial, starting with 1 at root:
I YES branch on xi: multiply with xi

I NO branch on xi: multiply with (1− xi)

For boolean vector inputs, value is always 0 or 1.

Take product going down on each branch.
Sum all branches entering 1 as the result polynomial.

Equivalent programs =⇒ equivalent polynomials

If polynomials non-equivalent, probability of difference zero is at
most md/f , for m variables, each of degree ≤ d, over field of size f .
=⇒ Since degree of each variable is 1, choose f > 3m.


