Primality Testing

Fermat’s Theorem: If \(a \in \mathbb{Z}_p^+ \) (\(p \) prime), then \(a^{p-1} \equiv 1 \pmod{p} \)

Corollary: if \(a < n \), and \(a^{n-1} \not\equiv 1 \pmod{n} \), then \(n \) is not prime.

Fermat test: \(n \) passes test at \(a \) if \(a^{n-1} \equiv 1 \pmod{n} \)

Pseudoprime: \(n \) passes Fermat test for all \(0 < a < n \). There are non-prime numbers that pass all tests (Carmichael numbers)

Can prove: if \(p \) is not pseudoprime, it fails at least half the tests. \(\implies \) run for \(k \) values \(a_i \), error bound \(2^{-k} \).

Miller-Rabin Primality Testing: Square Roots of 1

1 only has square roots -1 and 1 modulo any prime \(p \).

\(p \) prime candidate \(\implies \) odd \(\implies \) check \(a^{\frac{p-1}{2}} \)

if \(0 \neq 1 \), \(p \) is not prime.

If 1, can keep dividing exponent as long as even.

Write \(p-1 = s \cdot 2^t \).

Choose \(a < p \).

If \(a^{p-1} \not\equiv 1 \pmod{p} \), reject (\(p \) not prime)

Compute sequence \(a^2, a^2, \ldots, a^2 \pmod{p} \)

If some element \(\not\equiv 1 \), and last such element \(\neq -1 \), reject

Repeat for \(k \) different values \(a \implies \) error probability \(\leq 2^{-k} \)

Theorem: PRIMES is in BPP.

Probabilistic Turing Machines

Def: Nondeterministic TM with

- two branches at each nondeterminism step
- equal probabilities for both (coin flip) \(\implies \Pr[b] = 2^{-k} \) for branch \(b \) with \(k \) coin flips

Acceptance: \(\Pr[M \text{ accepts } w] = \sum_{\text{accepting } b} \Pr[b] \)

\(\Pr[M \text{ rejects } w] = 1 - \Pr[M \text{ accepts } w] \)

\(M \) decides language \(A \) with error probability \(\epsilon \) if

- \(w \in A \implies \Pr[M \text{ accepts } w] \geq 1 - \epsilon \)
- \(w \not\in A \implies \Pr[M \text{ rejects } w] \geq 1 - \epsilon \)

BPP (Bounded Error Probabilistic Polynomial Time)

BPP is the class of languages decided by probabilistic polynomial Turing machines with error probability 1/3

Choice of 1/3 is arbitrary. Anything in \((0, 1/2)\) works.

We can make the error probability arbitrarily small.

Amplification Lemma. For any polynomial \(p(n) \), a PPTM \(M_1 \) with error probability \(< 1/2 \) has an equivalent \(M_2 \) with err. prob. \(2^{-p(n)} = \text{arbitrary polynomial exponent, still in polynomial time} \)

How: \(M_2 \) simulates \(M_1 \) \(2k \) times, takes majority decision.

Max. error prob. on one run: \(k \) right, \(k \) wrong, \(\epsilon^k (1-\epsilon)^k \).

Over all \(2^k \) result sequences: \(2^k \epsilon^k (1-\epsilon)^k = (4\epsilon(1-\epsilon))^k \).

We want \((4\epsilon(1-\epsilon))^k \leq 2^{-p(n)} \). \(\implies k = -p(n)/\log(4\epsilon(1-\epsilon)) \)
Primality Testing: Proof

▶ If number is rejected, it’s composite
 ▶ by Fermat’s theorem, or
 ▶ $b^2 \equiv 1 \pmod{p} \implies (b+1)(b-1) = cp$
▶ If number is accepted, very likely prime
Each composite non-witness has a unique corresponding witness

The Class RP

Our test had one-sided error
 ▶ accept means likely prime
 ▶ reject means surely composite

Def. RP is the class of languages decided by PPTM, where strings in the language are accepted with probability $\geq 1/2$, and strings not in the language are rejected with probability 1.

We showed $COMPOSITES \in RP$
Another primality test (Adleman-Huang) always rejects composites, and accepts primes with $Pr \geq 1/2$, so $PRIMES \in RP$

Branching Programs

Take Boolean decision tree, merge equivalent nodes \implies DAG

Def. Branching Program
 ▶ DAG, nodes are query nodes or two outputs, 0 and 1
 ▶ query nodes labeled by variables, 2 outgoing edges (yes/no)
 ▶ designated root (start) node (for evaluation)
Branching programs define the class L (can build poly-size branching program deciding any language in L)
read-once branching program: on each path from root to 0/1, a variable is queried at most once (not redundant)

$EQ_{ROBP} = \{\langle B_1, B_2 \rangle \mid B_1$ and B_2 are equivalent read-once branching programs}$

EQ_{ROBP} is in BPP

Can’t randomly choose boolean vectors, since programs might differ only on one vector of 2^m
Instead, compute polynomial, starting with 1 at root:
 ▶ YES branch on x_i: multiply with x_i
 ▶ NO branch on x_i: multiply with $(1 - x_i)$
For boolean vector inputs, value is always 0 or 1.
Take product going down on each branch.
Sum all branches entering 1 as the result polynomial.
Equivalent programs \implies equivalent polynomials
If polynomials non-equivalent, probability of difference zero is at most md/f, for m variables, each of degree $\leq d$, over field of size f.
\implies Since degree of each variable is 1, choose $f > 3m$.