NC¹ and Barrington's Theorem

COMPSCI 501 Guest Lecture David Mix Barrington 17 April 2019

NC¹ and Barrington's Theorem

- NC^I in Context
- Branching Programs
- Regular Languages and Monoid Multiplication
- Simulating Circuits With S₅ Programs
- Extensions: Algebra and Complexity

NC^I in Context

- NC¹ is the set of decision problems solvable by boolean circuits (AND, OR, and NOT gates) of fan-in two, polynomial size, and depth O(log n).
- It sits inside L (deterministic log space) and thus inside NL, P, and NP. A log space DTM can evaluate an NC¹ circuit by depth-first search, using a stack to remember its location, as long as the circuit is sufficiently uniform.

Circuit Uniformity

- For most circuit classes, it suffices to define a "uniform" circuit to be one that can be constructed by a logspace Turing machine.
- But when we are interested in complexity classes inside L, this won't always do.
- "First-order uniformity" means that structural questions about the circuit can be defined by first-order formulas — this is the standard notion in CS 601.

Basic Results About NC¹

- NC¹ circuits and formulas (circuits that are trees) have the same computational power. Evaluating a formula is a complete problem for NC¹.
- NC¹ strictly includes AC⁰, the class of problems solvable by circuits of unbounded fan-in, polynomial size, and depth O(1). The "strict" is because the parity language can be shown not to be in AC⁰.

Basic Results About NC¹

- Lots of arithmetic operations on binary integers can be done in NC¹. But even the majority function, counting the number of I's in the input string, is not obvious. Adding two binary numbers is AC⁰, so adding n of them together in the obvious way would be AC¹.
- But there are tricks using a different notation for binary numbers, two can be added in NC⁰, so n can be added in NC¹, and converting back to normal notation is AC⁰.

Basic Results About NC¹

- Sipser and others showed in the early 1980's that parity (and therefore majority) is not in AC⁰. This was thought to be the first step in a series of lower bounds against larger and larger circuit classes, culminating in a lower bound against poly-size general circuits that would prove P ≠ NP.
- In the second step, Razborov and Smolensky showed that even with parity gates (or mod p gates for a single prime p), AC⁰ still cannot do majority.

Branching Programs

- Also in the mid-80's, there was an interest in another combinatorial model of computation, that of **branching programs**, and its relation to circuit classes.
- A branching program is just a flowchart, where at each node the program queries one of the input bits, and goes to either the 0successor or the 1-successor of that node depending on the result. A **decision tree** is the special case where the fan-in is 1.

Branching Programs

- Could we get a lower bound against a restricted class of branching programs, like the lower bounds against AC⁰ and AC⁰ with mod p gates?
- Borodin et al. proved a lower bound against programs of width 2. Here we'll define width as follows. The nodes of a width-w BP are divided into levels of size w, and the two successors of a node on level i are on level i+1. Also, all nodes on a level query the same input variable.

Classes Within NC¹

- If we augment AC⁰ with mod-m gates for some fixed m (possibly composite), but keep constant depth and polynomial size, we get the class ACC⁰. There seems to be no reason that the majority function should be in this class.
- If we use the mod-m gates alone, with constant depth and polynomial size, we get the class CC⁰. There seems to be no reason that the AND function should be in this class.

Branching Programs

- Poly-size branching programs are equivalent to deterministic log space TM's, as long as the programs are uniform.
- An LSTM can trace the correct path through the program, using log space to remember where it is.
- Since a configuration of an LSTM is given by the state, tape contents, and head positions, there are only polynomially many, and we can make a BP with a node for each one.

Branching Programs

- So for my Ph.D. research I took on the problem of extending the lower bound, say to all constant widths.
- This class BWBP might be interesting because it strictly includes AC⁰ (and even ACC⁰, which allows modular gates of any fixed modulus), but still looks weak.
- It also includes all regular languages, but we have lower bound techniques against that class. Could we show MAIORITY ∉ BWBP?

Regular Languages and Monoids

- Think back to the argument that the parity language is in NC¹. You make a binary tree of XOR gates, each of which has constant size and depth.
- You can think of this as "multiplying" together n elements in the group \mathbb{Z}_2 , using a binary tree of binary \mathbb{Z}_2 multiplications.
- Actually the decision problem for any regular language can be thought of similarly.

Regular Languages and Monoids

- So to determine whether w is in L(M), we can look up $\phi(a)$ for each letter in w, compose these n functions together to get $\phi(w)$, and determine whether $(\phi(w))(q_0) \in F$. From a circuit point of view, this is all easy except for the iterated multiplication of n elements of T_k , where k is the number of states in M.
- But this iterated multiplication is clearly in NC¹ if k is a constant, since any function with O(1) inputs and outputs is in NC⁰.

Programs Over Monoids

- It turns out that classes of monoids, previously studied by algebraists, correspond to circuit classes. Poly-length programs over aperiodic monoids, for example, are equivalent to AC⁰.
- Programs over **groups** (or "permutation branching programs) are an interesting special case. I was able to prove that programs over S₃ could do AND in exponential size, but not in polynomial size.

Regular Languages and Monoids

- If X is any finite set with n elements, the bijections on X form a group with n! elements, called S_n, under the operation of composition. The functions from X to X form a **monoid** with nⁿ elements, called T_n, under the same operation.
- If M is a DFA with n states, every input letter a defines a function $\varphi(a)$ on the states, given by $(\varphi(a))(q) = \delta(q,a)$. Given any string w, we can define a function $\varphi(w)$ on the states as the ordered composition of the $\varphi(a)$'s in w.

Programs Over Monoids

This gives us an equivalent way to look at BWBP. Fix a finite monoid M. An M-program of length t is a sequence of t instructions, each of which is a triple (i, σ, τ) where σ and τ are in M. The yield of (i, σ, τ) is σ if x_i = 0 and τ if x_i = I. The yield of the program is the composition of the yields of the instructions. The language of the program is the set of strings whose yield is

Simulating Circuits with S₅

in some fixed subset F of M.

- A reasonable conjecture would be that no program over a group could do AND in polynomial size, much less majority.
- But it turns out that once the group is complicated enough, programs over it are surprisingly powerful.
- Theorem: The language of any fan-in two circuit of depth d can be decided by an S₅ program of length 4^d. (Hence BWBP = NC¹.)

Permutation Preliminaries

- If X = {1,2,3,4,5}, we can write a permutation in **cycle form**. For example, (1 3 5 4 2) is the permutation that takes 1 to 3, 3 to 5, 5 to 4, 4 to 2, and 2 to 1. If a permutation has more than one cycle we concatenate the cycles, as in "(1 5 3)(2 4)".
- Two permutations α and β with the same cycle structure are **conjugate**, meaning that there exists γ such that $\beta = \gamma \alpha \gamma^{-1}$. In particular, any two five-cycles are conjugate.

Adjusting Programs

- **Lemma:** Let f be a non-empty S₅-program of length t, and let α and β be any permutations. Then there exists a program g of length t such that for any string w, g(w) = α f(w) β .
- **Proof:** Multiply the permutations in the first instruction of f on the left by α , and the permutations in the last instruction of f on the right by β .

The Key Step

- Let's say that L = L₁ ∩ L₂, so that our circuit of depth d has an AND gate at the top. (We can simulate OR gates with AND and NOT.)
- By the IH, we have programs f_1 and f_2 five-cycle recognizing L_1 and L_2 . Since we can pick the five-cycles at will, we will have f_1 yield (I 2 3 4 5) if $w \in L_1$ and have f_2 yield (I 3 5 4 2) if $w \in L_2$.

Five-Cycle Recognition

- Let L be a subset of {0,1}ⁿ. We say that an S₅ program f **five-cycle recognizes** L if f yields a five-cycle (a b c d e) when w ∈ L and yields the identity id when w ∉ L. We'll show it doesn't matter what a, b, c, d, and e are.
- We will prove that if L is decided by a circuit of depth d, it is five-cycle recognized by a program of length at most 4^d. Of course we will prove this by induction on d.

Starting the Proof

- Base case: d = 0, so we need a program of length 1 to simulate an input gate or negated input gate. The single instruction is just (i, id, (1 2 3 4 5)) or (i, (1 2 3 4 5), id).
- NOT case: Given a program that yields id when w ∉ L and (a b c d e) when w ∈ L, use the Lemma to multiply the yield by (e d c b a). This gives (e d c b a) when w ∉ L and id when w ∈ L. Since one five-cycle is as good as another by the Lemma, we are done without increasing the length at all.

The Key Step

- We will also make g₁ that five-cycle recognizes L₁ yielding (5 4 3 2 1), and g₂ fivecycle recognizing L₂ with yield (2 4 5 3 1).
- Our program f will just be the concatenation $f_1f_2g_1g_2$. Since each of the IH-derived programs has length at most 4^{d-1} , f has length at most 4^d .
- Now we just have to verify that f five-cycle recognizes $L = L_1 \cap L_2$.

The Key Step

- If $w \notin L_1$ and $w \notin L_2$, f(w) = (id)(id)(id)(id) = id.
- If w ∉ L₁ and w ∈ L₂, f(w) = (id)(1 3 5 4 2)(id)(2 4 5 3 1) = id.
- If $w \in L_1$ and $w \notin L_2$, f(w) = (1 2 3 4 5)(id)(5 4 3 2 1)(id) = id.
- If $w \in L_1$ and $w \in L_2$, f(w) = (1 2 3 4 5)(1 3 5 4 2)(5 4 3 2 1)(2 4 5 3 1) = (1 3 2 5 4).
- So it works, and we are done.

Why Did This Work?

- S₅ happens to have two elements that are conjugate both to one another and to their commutator.
- This can only happen in a non-solvable group, the smallest of which is A₅ with 60 elements (the even permutations in S₅).
- No similar trick will work in S₄, for example, but there could conceivably be a way to simulate NC¹ with S₄ programs.

Lower Bounds

- There is basically one known lower bound technique for programs over groups.
- It works for S₃ and A₄, showing that while the AND function has exponential-length programs, it doesn't have polynomial-length ones.
- We've conjectured that AND requires exponential length over any solvable group, which is equivalent to "AND ∉ CC".

Algebra and Complexity

- So iterated multiplication over a finite group or groupoid is in NC¹.
- Over constant-dimension integer matrices, it seems to be "close to" NC¹ but not in it.
- Over a fixed non-associative structure (a groupoid), where iterated multiplication becomes nondeterministic, it becomes complete for the class LOGCFL or SAC¹, which contains NL and is contained in AC¹.

Algebra and Complexity

- We can also ask about the generation problem. The input is a structure, a subset, and a target element, and we are asked whether any product of elements from the subset equals the target.
- Over groupoids this problem is P-complete.
- Over finite groups it is in L, but "almost in" AC⁰ so that it is not complete for any class that includes parity, such as NC¹ or L.