COMPSCI 501: Formal Language Theory Lecture 32: Circuits and Parallelism Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	Review: Circuit families and complexityCircuits are fixed-size \implies family of circuits, one per input lengthDef: A circuit family C is an infinite list of circuits, (C_0, C_1, C_2, \ldots) , where C_n has n input variables.C decides a language A over $\{0, 1\}$ if for every string w, $w \in A$ iff $C_n(w) = 1$. $(n = w)$ Can define: $>$ size, size-minimal circuits (no smaller equivalent) $>$ size complexity of a family: $f : \mathbb{N} \to \mathbb{N}$, $f(n) = size(C_n)$ $>$ depth, depth minimal, depth complexity (measure of parallel time complexity)Circuit complexity of a language = size complexity of minimal circuit family
Parallelism: Processor vs. circuit modelsParallel Random Access Machine (PRAM): many (simple) processors simultaneousy access shared memory with various forms of conflict resolutionAgain, PRAM model handles all input lengths For circuits: need to easily obtain entire familyDef. A family of circuits $\langle C_0, C_1, \dots, C_n \rangle$ is uniform if some log-space transducer outputs $\langle C_n \rangle$ when input is 1^n .Simultaneous size-depth circuit complexity $(f(n), g(n))$ if: size complexity $f(n)$ depth complexity $g(n)$ Why simultaneous ?	Examples: poly size, poly-log depth Insight: can often group circuits in binary tree Parity: $[x_1 \oplus \oplus x_{n_2}] \oplus [x_{n/2+1} \oplus \oplus x_n]$ size-depth: $(O(n), O(\log n))$ Boolean matrix multiplication: $c_i k = \bigvee_j (a_{ij} \land b_{jk})$ binary tree for the OR m^3 AND gates, m^3 OR gates, input size $n = O(m^2)$ size-depth $(O(n^{3/2}), O(\log n))$ Transitive closure: $A \lor A^2 \lor \lor A^m$ for matrix path of up to m edges \Longrightarrow pairwise connectivity circuit for $A \lor A^2$: size-depth $(O(n^{3/2}), O(\log n))$ repeated squaring $A \lor \lor A^4$, etc. $O(\log n)$ levels of squaring (multiplication with same inputs) size-depth $(O(n^{3/2} \log n), O(\log^2(n)))$
The Class NC Def. NC^i $(i \ge 1)$ is the class of languages that can be decided by a uniform family of circuits with polynomial size and $O(\log^i n)$ depth.NC is the class of languages that are in NC ⁱ for some i.Functions implemented by such circuits are NC ⁱ computable.Other circuit models (brief mention):AC ⁱ : like NC, but gates have unlimited fan-in (inputs).TC ⁱ : like AC, and also majority gates ("threshold circuits").Can prove (not here):NC ⁱ \subseteq AC ⁱ \subseteq TC ⁱ \subseteq NC ⁱ⁺¹	Where is NC in hierarchy? Theorem: $NC \subseteq P$ Do in poly-time: 1) generate circuit C_n 2) evaluate on w ($ w = n$) Theorem: $NC^1 \subseteq L$ Can we evaluate a NC ¹ circuit in log space? 1. Construct circuit: doable with log-space transducer (by def.) 2. Evaluate circuit: recursively, from output (DFS) need stack (path): ok, since circuit only has depth $O(\log n)$ Next: bound in the other direction: $NL \subseteq NC^2$

$\mathsf{NL}\subseteq\mathsf{NC}^2$

Nondeterminism \implies must evaluate *all* paths \implies construct (closure of) *transition relation*

- From NL machine M, construct configuration graph G of M: edge for any $c_1 \rightarrow c_2.$
- A configuration has log space \implies polynomially many
- Condition edge (c_1,c_2) on legal values of cell read by head 0 or 1 (or both)

Can compute path relation (transitive closure of G 's edge relation) by poly-size circuit of $O(\log^2 n)$ depth

Construction doable in log space (see proof that *PATH* is NL-hard)

P-completeness

Def. A language B is $\ensuremath{\textbf{P-complete}}$ if

1. $B \in \mathsf{P}$ and

2. every language in P is log space reducible to B

If $A \leq_L B$ and B is in NC, then A is in NC.

CIRCUIT-VALUE problem = evaluating a circuit on its input $\{\langle C, x \rangle \mid C \text{ is a circuit and } C(x) = 1\}.$

CIRCUIT-VALUE is P-complete

For a TM taking t(n) steps, we've constructed an $O(t^2(n))$ circuit Construction is repetitive (encode next symbol for each cell) and can be done in log space.