COMPSCI 501: Formal Language Theory

Lecture 31: Circuit Complexity
Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

10 April 2019

What can we implement via circuits?

» A tool for attacking P = NP?
» |dentify parallelizable computation vs. sequential bottleneck

» Alternative NP-completeness for SAT

From Sequential to Combinational
Circuits: AND, OR, NOT gates. Acyclic (why?)

Simplest computations: output = f(input). f:{0,1}" — {0,1}
May generalize to multiple output bits, {0, 1}*

z = x + y. Binary representation, combinational circuit.

How about:
s=0
fori =1tondo

s =s + afi]

end for

Can view ali] as inputs

Introduce successive copies of s and unroll:

so=0As1=s0+a1 N...NSp =5p—1+an

Polynomial time algorithm = polynomial size circuit

n stages: = circuit depth matters (lecture on parallelism)

Circuit families and complexity
Turing machine can be fixed, variable-length input
Circuit is fixed-size = family of circuits, one per input length

Def. A circuit family C is an infinite list of circuits,
(Co, C1,Cy, . ..), where Cy, has n input variables.

C decides a language A over {0, 1} if for every string w,
w e Aiff Cp(w) =1. (n=|wl|)

Can define:
> size, size-minimal circuits (no smaller equivalent)
> size complexity of a family: f: N —= N, f(n) = size(Cy,)

» depth, depth minimal, depth complexity (measure of
sequential-ness)

Circuit complexity of a language = size complexity of minimal
circuit family

Time vs. Circuit Complexity

Theorem: Let ¢t : N — N be a function with t(n) > n.
If A € TIME(t(n)), then A has circuit complexity O(t?(n)).

Consequence: if we were to find a language in NP with more than
polynomial circuit complexity, that language can’t be in P!

Assume running time ¢(n)
Build ¢(n) x t(n) tableau of configurations
Build circuit C,, from tableau.

>

>
>
>

v

standardize accept: halt on leftmost cell, write blank

encode head together with tape symbol: [(Q x T)UT| =k
one bit (wire) saying “cell[i,j] has symbol s”" = kt?(n) bits
bit[i, j, s] can be bit[i — 1,7, s] (keep previous)

or come from cells j —1/5+ 1 in row ¢ — 1 (head move/write)
cells in row 1 wired to input word

CIRCUIT-SAT is NP-complete

CIRCUIT=SAT = {(C)|C is a satisfiable circuit}

Clearly, it's in NP (witness = satisfying assignment, check in P)
Mapping reduction for any lanugage A € NP to CIRCUIT-SAT
f(w) = (C) with w € A < C is satisfiable

A € NP = has poly-time verifier V' with input (z, c)

Construct circuit for V' using tableau method.
Inputs for w filled in, inputs for ¢ free.
C satisfiable iff a certificate exists < w € A

Circuit building time/size: square in verifier size = polynomial




3-SAT reduction from CIRCUIT-SAT

Express truth table for each gate as conjunction of implications:

x = a AND b: (similar for OR, NOT)
(aANb—=z)AN(maANb— —x)A(aN—b— —z)A(maA-b— —x)
(maV-bVz)A(aV-bV-z)A(-aVbV-z)A(aVbVx)

Could simplify to (ma VvV =bV z) A (aV —x) A (bV —z)
(recall Tseitin transform)

Construction: linear time, linear-size formula ¢
(one variable for each input and wire; < 3 literals/clause)

¢ precisely describes C's computation: satisfiable iff C' is




