
COMPSCI 501: Formal Language Theory
Lecture 31: Circuit Complexity

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

10 April 2019

What can we implement via circuits?

I A tool for attacking P = NP?
I Identify parallelizable computation vs. sequential bottleneck
I Alternative NP-completeness for SAT

From Sequential to Combinational
Circuits: AND, OR, NOT gates. Acyclic (why?)

Simplest computations: output = f(input). f : {0, 1}n → {0, 1}
May generalize to multiple output bits, {0, 1}k

z = x+ y. Binary representation, combinational circuit.

How about:
s = 0
for i = 1 to n do

s = s + a[i]
end for

Can view a[i] as inputs

Introduce successive copies of s and unroll:

s0 = 0 ∧ s1 = s0 + a1 ∧ . . . ∧ sn = sn−1 + an

Polynomial time algorithm =⇒ polynomial size circuit

n stages: =⇒ circuit depth matters (lecture on parallelism)

Circuit families and complexity
Turing machine can be fixed, variable-length input

Circuit is fixed-size =⇒ family of circuits, one per input length

Def: A circuit family C is an infinite list of circuits,
(C0, C1, C2, . . .), where Cn has n input variables.

C decides a language A over {0, 1} if for every string w,
w ∈ A iff Cn(w) = 1. (n = |w|)
Can define:
I size, size-minimal circuits (no smaller equivalent)
I size complexity of a family: f : N→ N, f(n) = size(Cn)
I depth, depth minimal, depth complexity (measure of

sequential-ness)

Circuit complexity of a language = size complexity of minimal
circuit family

Time vs. Circuit Complexity

Theorem: Let t : N→ N be a function with t(n) ≥ n.
If A ∈ TIME(t(n)), then A has circuit complexity O(t2(n)).

Consequence: if we were to find a language in NP with more than
polynomial circuit complexity, that language can’t be in P!

Assume running time t(n)
Build t(n)× t(n) tableau of configurations
Build circuit Cn from tableau.
I standardize accept: halt on leftmost cell, write blank
I encode head together with tape symbol: |(Q× Γ) ∪ Γ| = k
I one bit (wire) saying “cell[i,j] has symbol s” =⇒ kt2(n) bits
I bit[i, j, s] can be bit[i− 1, j, s] (keep previous)

or come from cells j − 1/j + 1 in row i− 1 (head move/write)
I cells in row 1 wired to input word

CIRCUIT-SAT is NP-complete

CIRCUIT=SAT = {〈C〉|C is a satisfiable circuit}
Clearly, it’s in NP (witness = satisfying assignment, check in P)

Mapping reduction for any lanugage A ∈ NP to CIRCUIT-SAT
f(w) = 〈C〉 with w ∈ A⇔ C is satisfiable

A ∈ NP =⇒ has poly-time verifier V with input 〈x, c〉
Construct circuit for V using tableau method.
Inputs for w filled in, inputs for c free.
C satisfiable iff a certificate exists ⇔ w ∈ A
Circuit building time/size: square in verifier size =⇒ polynomial

3-SAT reduction from CIRCUIT-SAT

Express truth table for each gate as conjunction of implications:

x = a AND b: (similar for OR, NOT)

(a ∧ b→ x) ∧ (¬a ∧ b→ ¬x) ∧ (a ∧ ¬b→ ¬x) ∧ (¬a ∧ ¬b→ ¬x)

(¬a ∨ ¬b ∨ x) ∧ (a ∨ ¬b ∨ ¬x) ∧ (¬a ∨ b ∨ ¬x) ∧ (a ∨ b ∨ ¬x)

Could simplify to (¬a ∨ ¬b ∨ x) ∧ (a ∨ ¬x) ∧ (b ∨ ¬x)
(recall Tseitin transform)

Construction: linear time, linear-size formula φ
(one variable for each input and wire; ≤ 3 literals/clause)

φ precisely describes C’s computation: satisfiable iff C is

