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Turing Machines, Recognizability, Decidability

A Turing recognizable (by M1) and Ā Turing recognizable (by M2)
=⇒ A decidable

run M1 and M2 in lockstep, see which halts first

Enumerating

Turing-recognizable ⇔ (recursively) enumerable

run for k steps on s1, s2, . . . sk (dovetailing)

Decidable ⇔ enumerable in lexicographical order

Problems for Recognizers

Acceptance:
AM = {〈M, w〉|M is a machine that accepts w}
Emptiness
EM = {〈M〉|M is a machine with L(M) = ∅}
Universality
ALLM = {〈M〉|M is a machine with L(M) = Σ∗}
Equivalence
EQM = {〈A, B〉|A, B are machines with L(A) = L(B)}

All decidable for DFA/NFA/REX (convert to minimized DFA)

ACFG, ECFG decidable, ALLCFG, EQCFG not decidable

ATM, HALTTM, ETM, etc. not decidable

Proving Undecidability of a Language L

Diagonalization (directly)

e.g., for proving ATM undecidable

Reducing from ATM. Example: ETM.

Assume decider D for ETM, build decider for ATM.

Construct a TM M1 that will either have an empty language or not,
depending on whether M accepts w.

won’t ever run M1, but feed as input to D

On input x:
if x 6= w, reject
otherwise, run A on w (= x), accept if A does

Thus, L(M1) = {w} if A accepts w, ∅ otherwise
Could use D to decide ATM.

More General: Rice’s Theorem

Let P be a nontrivial property of a Turing machine:
A language property, L(M1) = L(M2)→ (P (M1)↔ P (M2))
At least one TM has this property.

Then P is undecidable.

Let MP a Turing machine with that property.
(Assume language nonempty, else pick complement).

Construct M1 as follows:

On input x:
run A on w, (run forever or reject like A does)
run MP on x, accept if MP does.

This will either have the same language as MP , or the empty
language.
=⇒ could use decider for P to decide ATM.

Proving a Language is not Turing-recognizable

Similar idea, but reduce from ATM.

EQTM not Turing-recognizable nor co-Turing-recognizable.

On input 〈M, w〉, construct two machines:
M∅: rejects any input / Mall: accepts any input
Mw: accept all/none, according to run of M on w

M∅ not EQ Mw iff M accepts w: ATM≤m EQTM, ATM≤m EQTM

Mall EQ Mw iff M accepts w: ATM ≤m EQTM, ATM ≤m EQTM

Mapping reduction: f(〈M, w〉) = 〈M∅, Mw〉 or 〈Mall, Mw〉

Homework 4, accepting precisely all strings with even length.



Reduction via Computation Histories

Linear Bounded Automata: ALBA decidable (finite number of
configurations), but ELBA is not.

Set of accepting computation histories of a TM can be checked by
an LBA.

Another use: all strings that are not accepting computation histories
on a string w.
I can generate with a PDA / CFG =⇒ ALLCFG= undecidable

(deciding 6= Σ∗ ⇔ deciding ATM

I can generate via extended regular expressions
use to prove that equivalence of regular expressions with

exponentiation is EXPSPACE-hard.

Mapping Reducibility
Def. A function f : Σ∗ → Σ∗ is a computable function if some
Turing machine M , on input w, halts with just f(w) on tape.

Def. A language A is mapping reducible to language B
(written A ≤m B) if there is a computable function f : Σ∗ → Σ∗
where for every w, w ∈ A⇔ f(w) ∈ B
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FIGURE 7.30

Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B—but now the conversion is done efficiently. To test whether w ∈ A, we use
the reduction f to map w to f(w) and test whether f(w) ∈ B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.31

If A ≤P B and B ∈ P, then A ∈ P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w ∈ A whenever f(w) ∈ B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w ∈ A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

Before demonstrating a polynomial time reduction, we introduce 3SAT , a
special case of the satisfiability problem whereby all formulas are in a special
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YES for A means YES for B
NO for A means NO for B

Using Mapping Reducibility

Decidability

If A ≤m B and B is decidable, then A is decidable.

If A ≤m B and A is undecidable then B is undecidable.

Turing-recognizability

If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

If A ≤m B and A is not Turing-recognizable then B is not
Turing-recognizable.

Recursion Theorem

A TM can obtain and execute its own description.

Use: e.g., in proofs by contradiction (do something else than
description says)

e.g. assume ATM has a decider H
Construct a TM B:
On input w:

1. Obtain own description 〈B〉
2. Run H on input 〈B, w〉
3. Do the opposite of H (accept/reject)

Descriptive Complexity

The minimal description of a binary string x is the shortest string
〈M, w〉 where M halts on input w with x on tape.

The descriptive complexity (Kolmogorov complexity) is the length
of the mininmal description: K(x) = |d(x)|

Def.: A string x is c-compressible if K(x) ≤ |x| − c.

incompressible = not 1-compressible.
Most strings are close to incompressible.

Incompressible strings are undecidable.

Can only enumerate a finite subset.

Polynomial Verifiers and NP

Def. A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}
A polynomial-time verifier runs polynomial in the length of v.

A language is polynomially verifiable if it has a polynomial time
verifier.

NP is the class of languages that have polynomial-time verifiers.

equivalent: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine



NP-completeness

Def. A language B is NP-complete iff
1. B is in NP
2. for any A in NP, we have A ≤P B

I If B is NP-complete and B ≤P C, then C is NP-complete
reduce known NP-complete problem B to target C
reduce target problem C from NP-complete problem B

I If B is NP-complete and B ∈ P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Time Complexity

Time complexity class TIME(t(n)) = all languages that are
decidable by an O(t(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t2(n)) single-tape TM.

multi-tape polynomial ⇒ single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 2O(t(n))

deterministic single-tape TM.

nondeterministic polynomial ⇒ single-tape exponential

Space Complexity
Savitch’s Theorem

For any function f : N→ R+, where f(n) ≥ n,
NSPACE(f(n)) ⊆ SPACE(f2(n))

=⇒ NPSPACE = PSPACE

PSPACE-completeness: Quantified Boolean Formula = valid ?
also admits log-space reducibility

PATH = {〈G, s, t〉 | G is directed graph that has an s t path }
solvable in log space

Model for sublinear space: read-only input tape, work tape gives
space complexity.

Classes L, NL: use constant number of pointers to input tape

Complexity Hierarchies
L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

NL ( PSPACE P ( EXPTIME

f : N→ N that is at least O(log n) is space constructible if there is
a O(f(n)) space TM that computes f(n) from 1n

Space Hierarchy Theorem: For any space constructible function
f : N→ N, there exists a language that is decidable in O(f(n))
space but not o(f(n)) space.

SPACE(nc1) ( SPACE(nc2) for any real c1, c2 > 0

t : N→ N that is at least O(n log n) is time constructible if t(n) is
computable in time O(t(n)) from 1n.

Time Hierarchy Theorem: For any time constructible function
t : N→ N, there exists a language that is decidable in O(t(n)) time
but not in time o(t(n)/ log t(n)).

TIME(nc1) ( TIME(nc2) for any reals 1 ≤ c1 < c2

A Classification of NP-Complete Problems

I Optimization problems (find the min or max number of . . . )

I Decision problems (is there solution with ≤ k or ≥ k of . . . )

Equivalent in complexity, for a given problem

Satisfiability problems

“Most general”: satisfy all constraints
I Circuit-SAT

I SAT

I 3-SAT

I NAE-SAT not-all-equal



Covering Problems

Achieve some global goal with few elements
I Vertex Cover: cover edges with vertices
I Set Cover: cover entire set with subsets
I Hitting Set: cover subsets with elements
I Dominating Set: cover self and neighbor vertices

Packing Problems

Choose many elements while avoiding conflicts
I Independent Set vertices with no edges
I Set Packing non-intersecting subsets

Polynomial

Matching (edges with no common endpoints)
case of bipartite graphs (network flow)

Sequencing problems

I Hamiltonian Path (all nodes)
reduction to cycle: extra node, connected to all others

I Hamiltonian Cycle
reduction to path: split a node, add an endpoint to each half

I Traveling Salesman Problem minimum-length tour
reduce from Ham-Cycle

Numerical Problems

I Subset-Sum numbers with precise sum

reduce from SAT: construct numbers digit-by-digit

Partitioning / Coloring Problems

I 3-coloring no edge with same-color nodes
I k-coloring

Polynomial

2-coloring (bipartite graph)


