COMPSCI 501: Formal Language Theory

Lecture 30: Midterm Review
Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

8 April 2019

Turing Machines, Recognizability, Decidability

A Turing recognizable (by M) and A Turing recognizable (by My)
= A decidable

run M; and M> in lockstep, see which halts first

Enumerating
Turing-recognizable <> (recursively) enumerable
run for k steps on s1, so, ... si (dovetailing)

Decidable < enumerable in lexicographical order

Problems for Recognizers

Acceptance:
Apnr = {(M,w)|M is a machine that accepts w}

Emptiness
Ey = {(M)|M is a machine with L(M) = 0}

Universality
ALLy = {(M)|M is a machine with L(M) = X*}

Equivalence

EQwn = {(A, B)|A, B are machines with L(A) = L(B)}

All decidable for DFA/NFA/REX (convert to minimized DFA)
Ackg, Ecpg decidable, ALLcgg, EQcgg not decidable

Atm, HALTT\, ETwm, etc. not decidable

Proving Undecidability of a Language L

Diagonalization (directly)

e.g., for proving Aty undecidable

Reducing from Aty. Example: Ety.
Assume decider D for E1p, build decider for Atp.

Construct a TM M; that will either have an empty language or not,
depending on whether M accepts w.
won't ever run M, but feed as input to D

On input z:
if © # w, reject
otherwise, run A on w (= z), accept if A does

Thus, L(My) = {w} if A accepts w, () otherwise
Could use D to decide A1p.

More General: Rice's Theorem

Let P be a nontrivial property of a Turing machine:
A language property, L(M;) = L(Ms) — (P(M) <» P(Ms))
At least one TM has this property.

Then P is undecidable.

Let M P a Turing machine with that property.
(Assume language nonempty, else pick complement).

Construct M, as follows:

On input z:
run A on w, (run forever or reject like A does)
run M P on x, accept if M P does.

This will either have the same language as M P, or the empty
language.
= could use decider for P to decide Atwy.

Proving a Language is not Turing-recognizable

Similar idea, but reduce from Aty.

EQtm not Turing-recognizable nor co-Turing-recognizable.

On input (M, w), construct two machines:
Mg: rejects any input / Mgy accepts any input
M,,: accept all/none, according to run of M on w
My not EQ M,, iff M accepts w: Arm <m EQTm, Atm <m EQTm

My EQ M, iff M accepts w: Atm <m EQTM, Atm <m EQTMm
Mapping reduction: f({M,w)) = (My, My) or (M, M)

Homework 4, accepting precisely all strings with even length.

Reduction via Computation Histories

Linear Bounded Automata: A ga decidable (finite number of
configurations), but F| ga is not.

Set of accepting computation histories of a TM can be checked by
an LBA.

Another use: all strings that are not accepting computation histories
on a string w.
> can generate with a PDA / CFG = ALLcpg= undecidable
(deciding # ¥* < deciding Atm

» can generate via extended regular expressions
use to prove that equivalence of regular expressions with
exponentiation is EXPSPACE-hard.

Mapping Reducibility

Def. A function f : ¥* — ¥* is a computable function if some
Turing machine M, on input w, halts with just f(w) on tape.

Def. A language A is mapping reducible to language B
(written A <., B) if there is a computable function f : ¥* — X*
where for every w, w € A & f(w) € B

!

YES for A means YES for B
NO for A means NO for B

Using Mapping Reducibility

Decidability
If A<, B and B is decidable, then A is decidable.
If A<, B and A is undecidable then B is undecidable.

Turing-recognizability

If A<, B and B is Turing-recognizable, then A is
Turing-recognizable.

If A <., B and A is not Turing-recognizable then B is not
Turing-recognizable.

Recursion Theorem

A TM can obtain and execute its own description.

Use: e.g., in proofs by contradiction (do something else than
description says)

e.g. assume Aty has a decider H
Construct a TM B:
On input w:
1. Obtain own description (B)
2. Run H on input (B, w)
3. Do the opposite of H (accept/reject)

Descriptive Complexity

The minimal description of a binary string z is the shortest string
(M, w) where M halts on input w with = on tape.

The descriptive complexity (Kolmogorov complexity) is the length
of the mininmal description: K(z) = |d(z)|
Def.: A string z is c-compressible if K(z) < |z| —c.

incompressible = not 1-compressible.
Most strings are close to incompressible.

Incompressible strings are undecidable.

Can only enumerate a finite subset.

Polynomial Verifiers and NP

Def. A verifier for a language A is an algorithm V', where

A ={w |V accepts (w, c) for some string c}
A polynomial-time verifier runs polynomial in the length of v.
A language is polynomially verifiable if it has a polynomial time
verifier.
NP is the class of languages that have polynomial-time verifiers.

equivalent: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine

NP-completeness

Def. A language B is NP-complete iff
1. Bisin NP
2. for any A in NP, we have A <p B

» If B is NP-complete and B <p C, then C is NP-complete
reduce known NP-complete problem B to target C
reduce target problem C' from NP-complete problem B

» If B is NP-complete and B € P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Time Complexity

Time complexity class TIME(¢(n)) = all languages that are
decidable by an O(¢(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t?(n)) single-tape TM.

multi-tape polynomial = single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 20(t(n))
deterministic single-tape TM.

nondeterministic polynomial = single-tape exponential

Space Complexity

Savitch’s Theorem

For any function f : N — RT, where f(n) > n,
NSPACE(f(n)) C SPACE(f2(n))

= NPSPACE = PSPACE

PSPACE-completeness: Quantified Boolean Formula = valid ?
also admits log-space reducibility

PATH = {(G, s,t) | G is directed graph that has an s ~~ ¢ path }
solvable in log space

Model for sublinear space: read-only input tape, work tape gives
space complexity.

Classes L, NL: use constant number of pointers to input tape

Complexity Hierarchies
L € NL = coNL C P C NP C PSPACE C EXPTIME

NL C PSPACE P C EXPTIME

f N — N thatis at least O(logn) is space constructible if there is
a O(f(n)) space TM that computes f(n) from 1"

Space Hierarchy Theorem: For any space constructible function
f:N =N, there exists a language that is decidable in O(f(n))
space but not o(f(n)) space.

SPACE(n®) ¢ SPACE(n°?) for any real ¢1,c2 > 0
t:N — N that is at least O(nlogn) is time constructible if t(n) is
computable in time O(t(n)) from 1.

Time Hierarchy Theorem: For any time constructible function
t : N — N, there exists a language that is decidable in O(t(n)) time
but not in time o(t(n)/logt(n)).

TIME(n!) C TIME(n2) for any reals 1 < ¢; < ¢

A Classification of NP-Complete Problems

» Optimization problems (find the min or max number of ...)

» Decision problems (is there solution with < k or > k of ...)

Equivalent in complexity, for a given problem

Satisfiability problems

“Most general”: satisfy all constraints
» CircuiT-SAT
> SAT
> 3-SAT
» NAE-SAT not-all-equal

Covering Problems

Achieve some global goal with few elements
» Vertex Cover: cover edges with vertices
> Set Cover: cover entire set with subsets
> Hitting Set: cover subsets with elements

» Dominating Set: cover self and neighbor vertices

Packing Problems

Choose many elements while avoiding conflicts
> Independent Set vertices with no edges
» Set Packing non-intersecting subsets

Polynomial

Matching (edges with no common endpoints)
case of bipartite graphs (network flow)

Sequencing problems

» Hamiltonian Path (all nodes)
reduction to cycle: extra node, connected to all others

» Hamiltonian Cycle
reduction to path: split a node, add an endpoint to each half

» Traveling Salesman Problem minimum-length tour
reduce from HAM-CYCLE

Numerical Problems

» Subset-Sum numbers with precise sum

reduce from SAT: construct numbers digit-by-digit

Partitioning / Coloring Problems

» 3-coloring no edge with same-color nodes
» k-coloring
Polynomial

2-coloring (bipartite graph)

