
COMPSCI 501: Formal Language Theory
Lecture 30: Midterm Review

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

8 April 2019

Turing Machines, Recognizability, Decidability

A Turing recognizable (by M1) and Ā Turing recognizable (by M2)
=⇒ A decidable

run M1 and M2 in lockstep, see which halts first

Enumerating

Turing-recognizable ⇔ (recursively) enumerable

run for k steps on s1, s2, . . . sk (dovetailing)

Decidable ⇔ enumerable in lexicographical order

Problems for Recognizers

Acceptance:
AM = {〈M, w〉|M is a machine that accepts w}
Emptiness
EM = {〈M〉|M is a machine with L(M) = ∅}
Universality
ALLM = {〈M〉|M is a machine with L(M) = Σ∗}
Equivalence
EQM = {〈A, B〉|A, B are machines with L(A) = L(B)}

All decidable for DFA/NFA/REX (convert to minimized DFA)

ACFG, ECFG decidable, ALLCFG, EQCFG not decidable

ATM, HALTTM, ETM, etc. not decidable

Proving Undecidability of a Language L

Diagonalization (directly)

e.g., for proving ATM undecidable

Reducing from ATM. Example: ETM.

Assume decider D for ETM, build decider for ATM.

Construct a TM M1 that will either have an empty language or not,
depending on whether M accepts w.

won’t ever run M1, but feed as input to D

On input x:
if x 6= w, reject
otherwise, run A on w (= x), accept if A does

Thus, L(M1) = {w} if A accepts w, ∅ otherwise
Could use D to decide ATM.

More General: Rice’s Theorem

Let P be a nontrivial property of a Turing machine:
A language property, L(M1) = L(M2)→ (P (M1)↔ P (M2))
At least one TM has this property.

Then P is undecidable.

Let MP a Turing machine with that property.
(Assume language nonempty, else pick complement).

Construct M1 as follows:

On input x:
run A on w, (run forever or reject like A does)
run MP on x, accept if MP does.

This will either have the same language as MP , or the empty
language.
=⇒ could use decider for P to decide ATM.

Proving a Language is not Turing-recognizable

Similar idea, but reduce from ATM.

EQTM not Turing-recognizable nor co-Turing-recognizable.

On input 〈M, w〉, construct two machines:
M∅: rejects any input / Mall: accepts any input
Mw: accept all/none, according to run of M on w

M∅ not EQ Mw iff M accepts w: ATM≤m EQTM, ATM≤m EQTM

Mall EQ Mw iff M accepts w: ATM ≤m EQTM, ATM ≤m EQTM

Mapping reduction: f(〈M, w〉) = 〈M∅, Mw〉 or 〈Mall, Mw〉

Homework 4, accepting precisely all strings with even length.

Reduction via Computation Histories

Linear Bounded Automata: ALBA decidable (finite number of
configurations), but ELBA is not.

Set of accepting computation histories of a TM can be checked by
an LBA.

Another use: all strings that are not accepting computation histories
on a string w.
I can generate with a PDA / CFG =⇒ ALLCFG= undecidable

(deciding 6= Σ∗ ⇔ deciding ATM

I can generate via extended regular expressions
use to prove that equivalence of regular expressions with

exponentiation is EXPSPACE-hard.

Mapping Reducibility
Def. A function f : Σ∗ → Σ∗ is a computable function if some
Turing machine M , on input w, halts with just f(w) on tape.

Def. A language A is mapping reducible to language B
(written A ≤m B) if there is a computable function f : Σ∗ → Σ∗
where for every w, w ∈ A⇔ f(w) ∈ B

7.4 NP-COMPLETENESS 301

FIGURE 7.30

Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B—but now the conversion is done efficiently. To test whether w ∈ A, we use
the reduction f to map w to f(w) and test whether f(w) ∈ B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.31

If A ≤P B and B ∈ P, then A ∈ P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w ∈ A whenever f(w) ∈ B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w ∈ A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

Before demonstrating a polynomial time reduction, we introduce 3SAT , a
special case of the satisfiability problem whereby all formulas are in a special

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

YES for A means YES for B
NO for A means NO for B

Using Mapping Reducibility

Decidability

If A ≤m B and B is decidable, then A is decidable.

If A ≤m B and A is undecidable then B is undecidable.

Turing-recognizability

If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

If A ≤m B and A is not Turing-recognizable then B is not
Turing-recognizable.

Recursion Theorem

A TM can obtain and execute its own description.

Use: e.g., in proofs by contradiction (do something else than
description says)

e.g. assume ATM has a decider H
Construct a TM B:
On input w:

1. Obtain own description 〈B〉
2. Run H on input 〈B, w〉
3. Do the opposite of H (accept/reject)

Descriptive Complexity

The minimal description of a binary string x is the shortest string
〈M, w〉 where M halts on input w with x on tape.

The descriptive complexity (Kolmogorov complexity) is the length
of the mininmal description: K(x) = |d(x)|

Def.: A string x is c-compressible if K(x) ≤ |x| − c.

incompressible = not 1-compressible.
Most strings are close to incompressible.

Incompressible strings are undecidable.

Can only enumerate a finite subset.

Polynomial Verifiers and NP

Def. A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}
A polynomial-time verifier runs polynomial in the length of v.

A language is polynomially verifiable if it has a polynomial time
verifier.

NP is the class of languages that have polynomial-time verifiers.

equivalent: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine

NP-completeness

Def. A language B is NP-complete iff
1. B is in NP
2. for any A in NP, we have A ≤P B

I If B is NP-complete and B ≤P C, then C is NP-complete
reduce known NP-complete problem B to target C
reduce target problem C from NP-complete problem B

I If B is NP-complete and B ∈ P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Time Complexity

Time complexity class TIME(t(n)) = all languages that are
decidable by an O(t(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t2(n)) single-tape TM.

multi-tape polynomial ⇒ single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 2O(t(n))

deterministic single-tape TM.

nondeterministic polynomial ⇒ single-tape exponential

Space Complexity
Savitch’s Theorem

For any function f : N→ R+, where f(n) ≥ n,
NSPACE(f(n)) ⊆ SPACE(f2(n))

=⇒ NPSPACE = PSPACE

PSPACE-completeness: Quantified Boolean Formula = valid ?
also admits log-space reducibility

PATH = {〈G, s, t〉 | G is directed graph that has an s t path }
solvable in log space

Model for sublinear space: read-only input tape, work tape gives
space complexity.

Classes L, NL: use constant number of pointers to input tape

Complexity Hierarchies
L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

NL (PSPACE P (EXPTIME

f : N→ N that is at least O(log n) is space constructible if there is
a O(f(n)) space TM that computes f(n) from 1n

Space Hierarchy Theorem: For any space constructible function
f : N→ N, there exists a language that is decidable in O(f(n))
space but not o(f(n)) space.

SPACE(nc1) (SPACE(nc2) for any real c1, c2 > 0

t : N→ N that is at least O(n log n) is time constructible if t(n) is
computable in time O(t(n)) from 1n.

Time Hierarchy Theorem: For any time constructible function
t : N→ N, there exists a language that is decidable in O(t(n)) time
but not in time o(t(n)/ log t(n)).

TIME(nc1) (TIME(nc2) for any reals 1 ≤ c1 < c2

A Classification of NP-Complete Problems

I Optimization problems (find the min or max number of . . .)

I Decision problems (is there solution with ≤ k or ≥ k of . . .)

Equivalent in complexity, for a given problem

Satisfiability problems

“Most general”: satisfy all constraints
I Circuit-SAT

I SAT

I 3-SAT

I NAE-SAT not-all-equal

Covering Problems

Achieve some global goal with few elements
I Vertex Cover: cover edges with vertices
I Set Cover: cover entire set with subsets
I Hitting Set: cover subsets with elements
I Dominating Set: cover self and neighbor vertices

Packing Problems

Choose many elements while avoiding conflicts
I Independent Set vertices with no edges
I Set Packing non-intersecting subsets

Polynomial

Matching (edges with no common endpoints)
case of bipartite graphs (network flow)

Sequencing problems

I Hamiltonian Path (all nodes)
reduction to cycle: extra node, connected to all others

I Hamiltonian Cycle
reduction to path: split a node, add an endpoint to each half

I Traveling Salesman Problem minimum-length tour
reduce from Ham-Cycle

Numerical Problems

I Subset-Sum numbers with precise sum

reduce from SAT: construct numbers digit-by-digit

Partitioning / Coloring Problems

I 3-coloring no edge with same-color nodes
I k-coloring

Polynomial

2-coloring (bipartite graph)

