COMPSCI 501: Formal Language Theory Lecture 30: Midterm Review

Marius Minea marius@cs.umass.edu

University of Massachusetts Amherst

8 April 2019

Turing Machines, Recognizability, Decidability

A Turing recognizable (by M_1) and \bar{A} Turing recognizable (by M_2) $\implies A$ decidable

run ${\it M}_1$ and ${\it M}_2$ in lockstep, see which halts first

Enumerating

Turing-recognizable \Leftrightarrow (recursively) enumerable run for k steps on $s_1, s_2, \dots s_k$ (dovetailing) Decidable \Leftrightarrow enumerable in lexicographical order

Problems for Recognizers

Acceptance: $A_M = \{ \langle M, w \rangle | M \text{ is a machine that accepts } w \}$

Emptiness $E_M = \{ \langle M \rangle | M \text{ is a machine with } L(M) = \emptyset \}$

Universality $ALL_M = \{ \langle M \rangle | M \text{ is a machine with } L(M) = \Sigma^* \}$ Equivalence

 $EQ_M = \{\langle A, B \rangle | A, B \text{ are machines with } L(A) = L(B) \}$

All decidable for DFA/NFA/REX (convert to minimized DFA) A_{CFG} , E_{CFG} decidable, ALL_{CFG} , EQ_{CFG} not decidable A_{TM} , $HALT_{TM}$, E_{TM} , etc. not decidable

More General: Rice's Theorem

Let P be a nontrivial property of a Turing machine: A *language property*, $L(M_1) = L(M_2) \rightarrow (P(M_1) \leftrightarrow P(M_2))$ At least one TM has this property.

Then P is undecidable.

Let MP a Turing machine with that property. (Assume language nonempty, else pick complement).

Construct M_1 as follows:

On input x: run A on w, (run forever or reject like A does) run MP on x, accept if MP does.

This will either have the same language as $MP, \, {\rm or} \, {\rm the \, empty}$ language.

 \implies could use decider for P to decide A_{TM} .

Proving Undecidability of a Language L

Diagonalization (directly)

e.g., for proving $A_{\mathsf{T}\mathsf{M}}$ undecidable

Reducing from A_{TM} . Example: E_{TM} .

Assume decider D for E_{TM} , build decider for A_{TM} .

Construct a TM M_1 that will either have an empty language or not, depending on whether M accepts w. won't ever run M_1 , but feed as input to D

On input x: if $x \neq w$, reject otherwise, run A on w (= x), accept if A does

Thus, $L(M_1) = \{w\}$ if A accepts w, \emptyset otherwise Could use D to decide A_{TM} .

Proving a Language is not Turing-recognizable

Similar idea, but reduce from $\overline{A_{\mathsf{TM}}}$.

 EQ_{TM} not Turing-recognizable nor co-Turing-recognizable.

On input $\langle M, w \rangle$, construct two machines: M_{\emptyset} : rejects any input $/ M_{all}$: accepts any input M_w : accept all/none, according to run of M on w M_{\emptyset} not EQ M_w iff M accepts w: $A_{\mathsf{TM}} \leq_{\mathsf{m}} \overline{EQ_{\mathsf{TM}}}$, $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$ M_{all} EQ M_w iff M accepts w: $A_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$, $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$ Mapping reduction: $f(\langle M, w \rangle) = \langle M_{\emptyset}, M_w \rangle$ or $\langle M_{all}, M_w \rangle$

Homework 4, accepting precisely all strings with even length.

Reduction via Computation Histories Mapping Reducibility Def. A function $f: \Sigma^* \to \Sigma^*$ is a computable function if some Turing machine M, on input w, halts with just f(w) on tape. Linear Bounded Automata: A_{LBA} decidable (finite number of configurations), but E_{LBA} is not. Def. A language A is mapping reducible to language BSet of accepting computation histories of a TM can be checked by (written $A \leq_{\mathsf{m}} B$) if there is a computable function $f: \Sigma^* \to \Sigma^*$ an LBA. where for every $w,\,w\in A\Leftrightarrow f(w)\in B$ Another use: all strings that are not accepting computation histories on a string w. \blacktriangleright can generate with a PDA / CFG $\implies \mathit{ALL}_{\mathsf{CFG}} =$ undecidable (deciding $\neq \Sigma^* \Leftrightarrow$ deciding A_{TM} can generate via extended regular expressions use to prove that equivalence of regular expressions with exponentiation is EXPSPACE-hard. YES for A means YES for B NO for A means NO for B Using Mapping Reducibility Recursion Theorem Decidability A TM can obtain and execute its own description. If $A \leq_{\mathsf{m}} B$ and B is decidable, then A is decidable. Use: e.g., in proofs by contradiction (do something else than If $A \leq_{\mathsf{m}} B$ and A is undecidable then B is undecidable. description says) e.g. assume A_{TM} has a decider HTuring-recognizability Construct a TM B: On input w: If $A \leq_{\mathsf{m}} B$ and B is Turing-recognizable, then A is 1. Obtain own description $\langle B \rangle$ Turing-recognizable. 2. Run H on input $\langle B, w \rangle$ If $A \leq_{\mathsf{m}} B$ and A is not Turing-recognizable then B is not 3. Do the opposite of H (accept/reject) Turing-recognizable. **Descriptive Complexity** Polynomial Verifiers and NP The **minimal description** of a binary string x is the shortest string Def. A verifier for a language A is an algorithm V, where $\langle M, w \rangle$ where M halts on input w with x on tape. $A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$ The descriptive complexity (Kolmogorov complexity) is the length A polynomial-time verifier runs polynomial in the length of v. of the minimal description: K(x) = |d(x)|A language is polynomially verifiable if it has a polynomial time verifier. *Def.*: A string x is c-compressible if $K(x) \leq |x| - c$. **incompressible** = not 1-compressible. NP is the class of languages that have polynomial-time verifiers. Most strings are close to incompressible. equivalent: A language is in NP iff it is decided by some Incompressible strings are undecidable. nondeterministic polynomial time Turing machine Can only enumerate a finite subset.

NP-completeness	Time Complexity
 Def. A language B is NP-complete iff B is in NP for any A in NP, we have A ≤_P B If B is NP-complete and B ≤_P C, then C is NP-complete reduce known NP-complete problem B to target C reduce target problem C from NP-complete problem B If B is NP-complete and B ∈ P, then P = NP All NP-complete problems are polynomially reducible to one another (the hardest problems in NP) 	Time complexity class TIME $(t(n)) =$ all languages that are decidable by an $O(t(n))$ (deterministic, single-tape) Turing machine. A $t(n)$ multitape TM has an equivalent $O(t^2(n))$ single-tape TM. multi-tape <i>polynomial</i> \Rightarrow single-tape <i>polynomial</i> Every $t(n)$ nondeterministic TM has an equivalent $2^{O(t(n))}$ deterministic single-tape TM. nondeterministic <i>polynomial</i> \Rightarrow single-tape <i>exponential</i>
Space ComplexitySavitch's TheoremFor any function $f : \mathbb{N} \to \mathbb{R}^+$, where $f(n) \ge n$, NSPACE $(f(n)) \subseteq$ SPACE $(f^2(n))$ \Rightarrow NPSPACE = PSPACEPSPACE-completeness: Quantified Boolean Formula = valid ? also admits log-space reducibility $PATH = \{\langle G, s, t \rangle \mid G \text{ is directed graph that has an } s \rightsquigarrow t \text{ path } \}$ solvable in log spaceModel for sublinear space: read-only input tape, work tape gives space complexity.Classes L, NL: use constant number of pointers to input tape	$\begin{array}{l} \hline \textbf{Complexity Hierarchies}\\ \textbf{L} \subseteq \textbf{NL} = \textbf{coNL} \subseteq \textbf{P} \subseteq \textbf{NP} \subseteq \textbf{PSPACE} \subseteq \textbf{EXPTIME}\\ \textbf{NL} \subsetneq \textbf{PSPACE} \qquad \textbf{P} \subsetneq \textbf{EXPTIME}\\ \hline \textbf{f} : \mathbb{N} \rightarrow N \text{ that is at least } O(\log n) \text{ is space constructible if there is a } O(f(n)) \text{ space TM that computes } f(n) \text{ from } 1^n\\ \hline \textbf{Space Hierarchy Theorem: For any space constructible function}\\ f: \mathbb{N} \rightarrow \mathbb{N}, \text{ there exists a language that is decidable in } O(f(n))\\ \text{space but not } o(f(n)) \text{ space.}\\ \hline \textbf{SPACE}(n^{c_1}) \subsetneq \textbf{SPACE}(n^{c_2}) \text{ for any real } c_1, c_2 > 0\\ \hline t: \mathbb{N} \rightarrow \mathbb{N} \text{ that is at least } O(n \log n) \text{ is time constructible if } t(n) \text{ is computable in time } O(t(n)) \text{ from } 1^n.\\ \hline \textbf{Time Hierarchy Theorem: For any time constructible function}\\ t: \mathbb{N} \rightarrow \mathbb{N}, \text{ there exists a language that is decidable in } O(t(n)) \text{ time but not in time } o(t(n)/\log t(n)).\\ \hline \textbf{TIME}(n^{c_1}) \subsetneq \textbf{TIME}(n^{c_2}) \text{ for any reals } 1 \leq c_1 < c_2 \end{array}$
A Classification of NP-Complete Problems	Satisfiability problems
 Optimization problems (find the min or max number of) Decision problems (is there solution with ≤ k or ≥ k of) Equivalent in complexity, for a given problem 	"Most general": satisfy all constraints CIRCUIT-SAT SAT 3-SAT NAE-SAT not-all-equal

Covering Problems	Packing Problems
 Achieve some global goal with few elements Vertex Cover: cover edges with vertices Set Cover: cover entire set with subsets Hitting Set: cover subsets with elements Dominating Set: cover self and neighbor vertices 	 Choose many elements while avoiding conflicts Independent Set vertices with no edges Set Packing non-intersecting subsets Polynomial Matching (edges with no common endpoints) case of bipartite graphs (network flow)
Sequencing problems	Numerical Problems
 Hamiltonian Path (all nodes) reduction to cycle: extra node, connected to all others Hamiltonian Cycle reduction to path: split a node, add an endpoint to each half Traveling Salesman Problem minimum-length tour reduce from HAM-CYCLE 	Subset-Sum numbers with precise sum reduce from SAT: construct numbers digit-by-digit
Partitioning / Coloring Problems	
 3-coloring no edge with same-color nodes k-coloring Polynomial 2-coloring (bipartite graph) 	