

Subset construction: with ϵ -transitions	Subset construction
If NFA is in any given state, it could also be in any state reachable by one or more ϵ -transitions Define $E(R) = \{q \mid q \text{ reachable from } R \text{ along } \epsilon$ -transitions} Transition relation changes to $\flat \delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R\}$	If NFA has k states, equivalent DFA could have up to 2^k states. Can you give an example? What can we say the resulting DFA has \emptyset as state? There is some w such that no string with prefix w is accepted.
Regular languages, again	Exercise: All-NFA
We've seen any NFA can be converted to an equivalent DFA. <i>Corollary</i> : A language is regular if and only if some <i>nondeterministic</i> finite automaton recognizes it. ⇒ If the language is accepted by an NFA, and the NFA has an equivalent DFA then the language is accepted by a DFA, thus regular. ⇐ If the language is regular, it's accepted by a DFA. Any DFA is also a NFA.	An all-NFA is like an NFA, except that is accepts a string $x \in \Sigma^*$ if every possible state of the NFA after reading x is accepting. Is the class of languages accepted by an all-NFA still the class of regular languages?
Closure under Union Add new initial state with ϵ -transitions to both initial states	Example: strings with certain lengths
$N_{1} \longrightarrow 0$ $N_{2} \longrightarrow 0$ $N_{2} \longrightarrow 0$ FIGURE 1.46	Consider a one-letter alphabet $\Sigma = \{0\}$ Strings which have length multiple of 2 <i>or</i> multiple of 3 $q_1 0 q_2$ $q_0 \epsilon 0$ $q_3 0 q_4 0 q_5$
Construction of an NFA N to recognize $A_1 \cup A_2$	

Closure under Concatenation

Add ϵ -transitions from all accept states of N_1 to initial state of N_2

FIGURE 1.48 Construction of N to recognize $A_1 \circ A_2$

Can we construct these without ϵ -transitions?

Yes, since we can convert any ϵ -NFA into one without ϵ :

Union: new initial state, add transitions of both initial states

Concatenation: transitions from all accepting states of N_1 to successors of initial state of N_2 (including from initial state of N_1 , if accepting) if $\epsilon \in L(N_1)L(N_2)$, initial state stays accepting

Star: initial state becomes accepting transitions from any accepting state to corresponding successors of initial state

Closure under Kleene Star

Add ϵ -transitions from all accept states to initial state, and new initial (and accepting) state with ϵ -transitions to original one.

FIGURE 1.50 Construction of N to recognize A^*

Do we need the extra initial state? What if we make the original initial state accepting?