COMPSCI 501: Formal Language Theory

Lecture 3: Nondeterministic Finite Automata
Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

January 28, 2019

Nondeterminism

Deterministic: next state uniquely determined by state and input
Nondeterministic: several choices (incl. zero) at any point
computation tree

Deterministic Nondeterministic
computation computation
C‘ start [.1
c. AVl
{ A
(!
!

reject ![‘\

* accept or reject * accept

FIGURE 1.28
Deterministic and nondeterministic computations with an accepting
branch

Think of it as forking multiple computations in parallel

Example: Nondeterministic Finite Automaton

Example: accept binary strings ending in 010

0,1

State go has two transitions on input 0.
State ¢; has no transition on input 0
run on input string might “get stuck” = reject

String is accepted if there is some run ending in accepting state.
Any string accepted must end in 010.

Any string ending in 010 is accepted: NFA can stay in initial state
until the last 3 symbols (“guesses” when to move).

NFA Definition

A nondeterministic finite automaton is a 5-tuple (Q, %, d, qo, F)
where

» () is a finite set of states
> X is the finite alphabet (of input symbols)

> §:Q x X — P(Q) is the transition function
alternatively: 6 C @ x ¥ x @ is the transition relation

> qo € Q is the start state

> F C (@ is the set of accept states.

Any relation R C A x B corresponds to a function fr: A — P(B)
fr(z) ={y € B | (z,y) € R}.

e-transitions

Transition marked with e (empty string) is taken without consuming
input symbol.

Denote ¥, = ¥ U {¢}. Revised definition:
> 5:QxX.—P(Q)
Textbook directly defines NFAs as allowing e-transitions.

Other sources distinguish NFAs and e-NFAs.
Any e-NFAs can be transformed into an equivalent NFA without e.

Equivalence of NFAs and DFAs

Subset construction: consider the set of states that the
automaton could be in at any given time

Construct DFA M = (Q',%,0, q5, F')

> Q' =P(Q) astate of M is a set of states of N
» §'(R,a) = Uperd(r,a) for Re Q' (RCQ)
> gy ={qo} (set with the one initial state)

> "={Re Q| RNF # 0} (contains some accept state)

Subset construction: with e-transitions

If NFA is in any given state, it could also be in any state reachable
by one or more e-transitions

Define E(R) = {q | q reachable from R along e-transitions}

Transition relation changes to

> §'(R,a)={q€ Q| q€ E((r,a)) for some r € R}

Subset construction

If NFA has k states, equivalent DFA could have up to 2¥ states.

Can you give an example?

What can we say the resulting DFA has) as state?

There is some w such that no string with prefix w is accepted.

Regular languages, again

We've seen any NFA can be converted to an equivalent DFA.

Corollary: A language is regular if and only if some nondeterministic
finite automaton recognizes it.

= If the language is accepted by an NFA,
and the NFA has an equivalent DFA
then the language is accepted by a DFA, thus regular.

< If the language is regular, it's accepted by a DFA.
Any DFA is also a NFA.

Exercise: All-NFA

An all-NFA is like an NFA, except that is accepts a string x € X* if
every possible state of the NFA after reading x is accepting.

Is the class of languages accepted by an all-NFA still the class of
regular languages?

Closure under Union

Add new initial state with e-transitions to both initial states

et 100
08© N 08©
“[oo| ool
0 @ e @
20O %O
N J —

FIGURE 1.46
Construction of an NFA N to recognize Ay U Ay

Example: strings with certain lengths

Consider a one-letter alphabet ¥ = {0}

Strings which have length multiple of 2 or multiple of 3

Closure under Concatenation
Add e-transitions from all accept states of V; to initial state of N,

N N,

o
-0 °, 0| |[-0 00 ©

°° O oo ©O

N
o < ©
Ooo OOO©

FIGURE 1.48
Construction of N to recognize A; o Ay

Closure under Kleene Star

Add e-transitions from all accept states to initial state, and
new initial (and accepting) state with e-transitions to original one.

N
N,

, O O O
L0 SR

FIGURE 1.50
Construction of N to recognize A*

Do we need the extra initial state?
What if we make the original initial state accepting?

Can we construct these without e-transitions?

Yes, since we can convert any e-NFA into one without e:
Union: new initial state, add transitions of both initial states

Concatenation: transitions from all accepting states of N; to
successors of initial state of No

(including from initial state of IV, if accepting)

if € € L(N1)L(N2), initial state stays accepting

Star. initial state becomes accepting
transitions from any accepting state to corresponding successors of
initial state

