Nondeterminism

Deterministic: next state uniquely determined by state and input

Nondeterministic: several choices (incl. zero) at any point

<table>
<thead>
<tr>
<th>Deterministic computation</th>
<th>Nondeterministic computation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Think of it as forking multiple computations in parallel.

Example: Nondeterministic Finite Automaton

Example: accept binary strings ending in 010

State q_0 has two transitions on input 0.

State q_1 has no transition on input 0.

run on input string might “get stuck” ⇒ reject

String is accepted if there is some run ending in accepting state.

Any string accepted must end in 010.

Any string ending in 010 is accepted: NFA can stay in initial state until the last 3 symbols (“guesses” when to move).

NFA Definition

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- Q is a finite set of states
- Σ is the finite alphabet (of input symbols)
- $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states.

Any relation $R \subseteq A \times B$ corresponds to a function $f_R : A \rightarrow \mathcal{P}(B)$ $f_R(x) = \{y \in B \mid (x, y) \in R\}$.

Equivalence of NFAs and DFAs

Subset construction: consider the set of states that the automaton could be in at any given time

Construct DFA $M = (Q', \Sigma, \delta', q'_0, F')$

- $Q' = \mathcal{P}(Q)$ a state of M is a set of states of N
- $\delta'(R, a) = \cup_{r \in R} \delta(r, a)$ for $R \in Q' (R \subseteq Q)$
- $q'_0 = \{q_0\}$ (set with the one initial state)
- $F' = \{R \in Q' \mid R \cap F \neq \emptyset\}$ (contains some accept state)
Subset construction: with ϵ-transitions

If NFA is in any given state, it could also be in any state reachable by one or more ϵ-transitions

Define $E(R) = \{q \mid q \text{ reachable from } R \text{ along } \epsilon\text{-transitions}\}$

Transition relation changes to

$\delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R\}$

Regular languages, again

We've seen any NFA can be converted to an equivalent DFA.

Corollary: A language is regular if and only if some nondeterministic finite automaton recognizes it.

\Rightarrow If the language is accepted by an NFA, and the NFA has an equivalent DFA, then the language is accepted by a DFA, thus regular.

$
\Leftarrow$ If the language is regular, it's accepted by a DFA. Any DFA is also a NFA.

Closure under Union

Add new initial state with ϵ-transitions to both initial states

![Diagram showing construction of an NFA $N_1 \cup N_2$]

Example: strings with certain lengths

Consider a one-letter alphabet $\Sigma = \{0\}$

Strings which have length multiple of 2 or multiple of 3

![Diagram showing an NFA accepting strings of length multiple of 2 or 3]
Closure under Concatenation

Add ϵ-transitions from all accept states of N_1 to initial state of N_2

Closure under Kleene Star

Add ϵ-transitions from all accept states to initial state, and new initial (and accepting) state with ϵ-transitions to original one.

Can we construct these without ϵ-transitions?

Yes, since we can convert any ϵ-NFA into one without ϵ:

Union: new initial state, add transitions of both initial states

Concatenation: transitions from all accepting states of N_1 to successors of initial state of N_2
(including from initial state of N_1, if accepting)
if $\epsilon \in L(N_1)L(N_2)$, initial state stays accepting

Star: initial state becomes accepting transitions from any accepting state to corresponding successors of initial state