
COMPSCI 501: Formal Language Theory
Lecture 3: Nondeterministic Finite Automata

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

January 28, 2019

Nondeterminism
Deterministic: next state uniquely determined by state and input
Nondeterministic: several choices (incl. zero) at any point

computation tree 1.2 NONDETERMINISM 49

FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Think of it as forking multiple computations in parallel

Example: Nondeterministic Finite Automaton

Example: accept binary strings ending in 010

q0 q1 q2 q3

0,1

0 1 0

State q0 has two transitions on input 0.
State q1 has no transition on input 0

run on input string might “get stuck” ⇒ reject

String is accepted if there is some run ending in accepting state.
Any string accepted must end in 010.
Any string ending in 010 is accepted: NFA can stay in initial state
until the last 3 symbols (“guesses” when to move).

NFA Definition
A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F )
where
I Q is a finite set of states

I Σ is the finite alphabet (of input symbols)

I δ : Q× Σ→ P(Q) is the transition function

alternatively: δ ⊆ Q× Σ×Q is the transition relation
I q0 ∈ Q is the start state

I F ⊆ Q is the set of accept states.

Any relation R ⊆ A×B corresponds to a function fR : A→ P(B)
fR(x) = {y ∈ B | (x, y) ∈ R}.

ε-transitions
Transition marked with ε (empty string) is taken without consuming
input symbol.

q0 q1 q2 q3

0,1

0 ε, 1 0

Denote Σε = Σ ∪ {ε}. Revised definition:
I δ : Q× Σε → P(Q)

Textbook directly defines NFAs as allowing ε-transitions.
Other sources distinguish NFAs and ε-NFAs.
Any ε-NFAs can be transformed into an equivalent NFA without ε.

q0 q1 q2 q3

0,1

0
0

1 0

Equivalence of NFAs and DFAs

Subset construction: consider the set of states that the
automaton could be in at any given time

Construct DFA M = (Q′,Σ, δ′, q′0, F ′)
I Q′ = P(Q) a state of M is a set of states of N

I δ′(R, a) = ∪r∈Rδ(r, a) for R ∈ Q′ (R ⊆ Q)

I q′0 = {q0} (set with the one initial state)

I F ′ = {R ∈ Q′ | R ∩ F 6= ∅} (contains some accept state)



Subset construction: with ε-transitions

If NFA is in any given state, it could also be in any state reachable
by one or more ε-transitions

Define E(R) = {q | q reachable from R along ε-transitions}

Transition relation changes to
I δ′(R, a) = {q ∈ Q | q ∈ E(δ(r, a)) for some r ∈ R}

Subset construction

If NFA has k states, equivalent DFA could have up to 2k states.

Can you give an example?

What can we say the resulting DFA has ∅ as state?
There is some w such that no string with prefix w is accepted.

Regular languages, again

We’ve seen any NFA can be converted to an equivalent DFA.

Corollary: A language is regular if and only if some nondeterministic
finite automaton recognizes it.

⇒ If the language is accepted by an NFA,
and the NFA has an equivalent DFA
then the language is accepted by a DFA, thus regular.

⇐ If the language is regular, it’s accepted by a DFA.
Any DFA is also a NFA.

Exercise: All-NFA

An all-NFA is like an NFA, except that is accepts a string x ∈ Σ∗ if
every possible state of the NFA after reading x is accepting.

Is the class of languages accepted by an all-NFA still the class of
regular languages?

Closure under Union
Add new initial state with ε-transitions to both initial states

1.2 NONDETERMINISM 59

technique of nondeterminism. Reviewing the first proof, appearing on page 45,
may be worthwhile to see how much easier and more intuitive the new proof is.

THEOREM 1.45

The class of regular languages is closed under the union operation.

PROOF IDEA We have regular languages A1 and A2 and want to prove that
A1 ∪A2 is regular. The idea is to take two NFAs, N1 and N2 for A1 and A2, and
combine them into one new NFA, N .

Machine N must accept its input if either N1 or N2 accepts this input. The
new machine has a new start state that branches to the start states of the old ma-
chines with ε arrows. In this way, the new machine nondeterministically guesses
which of the two machines accepts the input. If one of them accepts the input,
N will accept it, too.

We represent this construction in the following figure. On the left, we in-
dicate the start and accept states of machines N1 and N2 with large circles and
some additional states with small circles. On the right, we show how to combine
N1 and N2 into N by adding additional transition arrows.

FIGURE 1.46

Construction of an NFA N to recognize A1 ∪ A2

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Example: strings with certain lengths

Consider a one-letter alphabet Σ = {0}
Strings which have length multiple of 2 or multiple of 3

q0

q1 q2

q3 q4 q5

ε

0
0

ε

0 0
0



Closure under Concatenation
Add ε-transitions from all accept states of N1 to initial state of N21.2 NONDETERMINISM 61

FIGURE 1.48

Construction of N to recognize A1 ◦A2

PROOF

Let N1 = (Q1, Σ, δ1, q1, F1) recognize A1, and
N2 = (Q2, Σ, δ2, q2, F2) recognize A2.

Construct N = (Q, Σ, δ, q1, F2) to recognize A1 ◦A2.

1. Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.

2. The state q1 is the same as the start state of N1.

3. The accept states F2 are the same as the accept states of N2.

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 and q ̸∈ F1

δ1(q, a) q ∈ F1 and a ̸= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Closure under Kleene Star

Add ε-transitions from all accept states to initial state, and
new initial (and accepting) state with ε-transitions to original one.

62 CHAPTER 1 / REGULAR LANGUAGES

THEOREM 1.49

The class of regular languages is closed under the star operation.

PROOF IDEA We have a regular language A1 and want to prove that A∗
1 also

is regular. We take an NFA N1 for A1 and modify it to recognize A∗
1, as shown in

the following figure. The resulting NFA N will accept its input whenever it can
be broken into several pieces and N1 accepts each piece.

We can construct N like N1 with additional ε arrows returning to the start
state from the accept states. This way, when processing gets to the end of a piece
that N1 accepts, the machine N has the option of jumping back to the start state
to try to read another piece that N1 accepts. In addition, we must modify N
so that it accepts ε, which always is a member of A∗

1. One (slightly bad) idea is
simply to add the start state to the set of accept states. This approach certainly
adds ε to the recognized language, but it may also add other, undesired strings.
Exercise 1.15 asks for an example of the failure of this idea. The way to fix it is
to add a new start state, which also is an accept state, and which has an ε arrow
to the old start state. This solution has the desired effect of adding ε to the
language without adding anything else.

FIGURE 1.50

Construction of N to recognize A∗

PROOF Let N1 = (Q1, Σ, δ1, q1, F1) recognize A1.
Construct N = (Q, Σ, δ, q0, F ) to recognize A∗

1.

1. Q = {q0} ∪Q1.
The states of N are the states of N1 plus a new start state.

2. The state q0 is the new start state.

3. F = {q0} ∪ F1.
The accept states are the old accept states plus the new start state.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Do we need the extra initial state?
What if we make the original initial state accepting?

Can we construct these without ε-transitions?

Yes, since we can convert any ε-NFA into one without ε:

Union: new initial state, add transitions of both initial states

Concatenation: transitions from all accepting states of N1 to
successors of initial state of N2
(including from initial state of N1, if accepting)
if ε ∈ L(N1)L(N2), initial state stays accepting

Star: initial state becomes accepting
transitions from any accepting state to corresponding successors of
initial state


