	7
	Recap and Preview
COMPSCI 501: Formal Language Theory Lecture 29: Hierarchy Theorems Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	 L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME Refine this hierarchy Separation between classes Separate by space and time complexity <i>within</i> PSPACE and P Clearly, with more space or time, a TM can decide more languages Can it decide strictly more?
]
Space constructible functions	Space Hierarchy Theorem
Informally: f is space constructible if $f(n)$ is computable in space $O(f(n))$. Def . A function $f : \mathbb{N} \to N$ that is at least $O(\log n)$ is space constructible if there is a $O(f(n))$ space TM that computes $f(n)from 1^n (string of n 1s)."Usual" functions (polynomial, log) are space constructiblen^2: convert n to binary (\log n space), multiply with itself – spaceproportional to length, O(\log n)\log n: convert n to binary (\log n space), count bits (likewise)$	We're given a space bound $O(f(n))$ Some languages can be decided in $O(f(n))$ space If we now have asymptotically less space, $o(f(n))$, can we decide strictly less ? Recall: $g(n)$ is $o(f(n))$ if $\lim_{n\to\infty} g(n)/f(n) = 0$ Space Hierarchy Theorem: For any space constructible function $f: \mathbb{N} \to \mathbb{N}$, there exists a language that is decidable in $O(f(n))$ space but not $o(f(n))$ space.
Proof: Contradiction using Diagonalization	Proof of Space Hierarchy Theorem
Recall idea of diagonalization proof for A_{TM} : If you have a decider, you can simulate it, then answer the opposite! But simulation adds some space/time overhead Proof idea: difference between $o(f(n))$ and $O(f(n))$ enough for simulation. In space $O(f(n))$, can simulate anything that's in $o(f(n))$ and then do the opposite \implies we have a separator! We'll describe the language A in terms of a decider D for it (a TM). D must be different from any TM M that runs in $o(f(n))$ space. Diagonalization: if input is $\langle M \rangle$, do opposite of M (if input does not represent TM, don't care \implies reject)	Two technical details: Input M may not be a decider \implies must avoid nontermination count steps while simulating M , reject if more than $2^{f(n)}$ (we know $o(f(n))$ space runs in $2^{o(f(n))}$ time) $o(n)$ condition for M is true only for $n \ge n_0$. run M on w for any input $\langle M \rangle 10^k$ (input will eventually be long enough for M to complete) Space analysis Must represent any M using D' symbols: constant factor, depending on M Step counter only adds $\log f(n)$ space. \Longrightarrow total $O(f(n))$ space.

Corollary: Space complexity classes	Time constructible functions
For any functions $f_1, f_2 : \mathbb{N} \to \mathbb{N}$, with $f_1(n) = o(f_2(n))$, and f_2 space constructible, we have SPACE $(f_1(n)) \subsetneq$ SPACE $(f_2(n))$. In particular, we have SPACE $(n^{c_1}) \subsetneq$ SPACE (n^{c_2}) . • for all naturals c_i (since n^c is space constructible) • can prove n^c is space constructible for rationals • between any two reals we have two rationals	Informally: t is time constructible if $t(n)$ is computable in time $O(t(n))$. Def. A function $t : \mathbb{N} \to N$ that is at least $O(n \log n)$ is time constructible if $t(n)$ is computable in time $O(t(n))$ from 1^n . Why $\ge O(n \log n)$? We've seen binary conversion needs this time.
Time Hierarchy TheoremTime Hierarchy Theorem: For any time constructible function $t: \mathbb{N} \to \mathbb{N}$, there exists a language that is decidable in $O(t(n))$ timebut not in time $o(t(n)/\log t(n))$.Why log factor? Simulation may be done with constant factor forspace overhead, but not for time overhead:tape head needs to move on input, more than constant per moveTo keep moves efficient, divide tape into three tracks[12]3]12]3]12]3]12]3]1. information on M's tape2. M's transition function, and current state3. simulation time counterKey: keep tracks 2 and 3 contents close to head position on track 1(need to access them together)track 2: constant space \implies constant time to movetrack 3: $O(\log t(n))$ space \implies $O(\log t(n))$ time to moveExponential Space Completeness	Corollary: Time complexity classes For any functions $t_1, t_2 : \mathbb{N} \to \mathbb{N}$, with $t_1(n) = o(t_2(n)/\log t_2(n))$, and t_2 time constructible, we have TIME $(t_1(n)) \subsetneq$ TIME $(t_2(n))$. In particular, we have TIME $(n^{c_1}) \subsetneq$ TIME (n^{c_2}) for any real numbers $1 \le c_1 < c_2$ $P \subsetneq$ EXPTIME Proof: EQ_{REX^+} is in EXPSPACE
Def A language B is EXPSPACE-complete if 1. $B \in EXPSPACE$ 2. every A in EXPSPACE is polynomially reducible to B We identify a particular language that's EXPSPACE-complete. Generalized regular expressions: allow R^k as shorthand for $R \cdot R \cdot \ldots \cdot R$ (k concatenations) We show $EQ_{REX\uparrow}$ is EXPSPACE-complete (equivalence of two regexes with exponentiation)	On input $\langle R_1, R_2 \rangle$ 1. Convert generalized to basic regexes B_1, B_2 (exponential space) 2. Convert B_1, B_2 to NFAs (linear space) 3. Check their equivalence nondeterministic linear space guess distinguishing string, like in \overline{ALL}_{NFA} convert to $O(n^2)$ space deterministic by Savitch's theorem

Proof: $EQ_{\mathsf{REX}\uparrow}$ is EXPSPACE-hard

Take any language A decided by TM M in SPACE (2^{n^k}) Reduce using computation histories $R_1 = \Delta^*$, with $\Delta = \Gamma \cup Q \cup \{\#\}$ (configuration alphabet) R_2 = all strings which are **not** rejecting computation histories Not equivalent precisely if M accepts w

Rejecting CH may have: bad start, bad middle ("window"), bad reject

Exponentiation key to efficient encoding

e.g. all strings that don't have # in position $2^{n^k}+1:\; \Delta^{2^{n^k}}\Delta_{\#}\Delta^*$