
COMPSCI 501: Formal Language Theory
Lecture 29: Hierarchy Theorems

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

5 April 2019

Recap and Preview

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

I Refine this hierarchy
I Separation between classes
I Separate by space and time complexity within PSPACE and P
I Clearly, with more space or time, a TM can decide more

languages
I Can it decide strictly more?

Space constructible functions

Informally:
f is space constructible if f(n) is computable in space O(f(n)).

Def. A function f : N→ N that is at least O(log n) is space
constructible if there is a O(f(n)) space TM that computes f(n)
from 1n (string of n 1s).

“Usual” functions (polynomial, log) are space constructible

n2: convert n to binary (log n space), multiply with itself – space
proportional to length, O(log n)

log n: convert n to binary (log n space), count bits (likewise)

Space Hierarchy Theorem

We’re given a space bound O(f(n))

Some languages can be decided in O(f(n)) space

If we now have asymptotically less space, o(f(n)), can we decide
strictly less ?

Recall: g(n) is o(f(n)) if limn→∞ g(n)/f(n) = 0

Space Hierarchy Theorem: For any space constructible function
f : N→ N, there exists a language that is decidable in O(f(n))
space but not o(f(n)) space.

Proof: Contradiction using Diagonalization

Recall idea of diagonalization proof for ATM:

If you have a decider, you can simulate it, then answer the opposite!

But simulation adds some space/time overhead

Proof idea: difference between o(f(n)) and O(f(n)) enough for
simulation.

In space O(f(n)), can simulate anything that’s in o(f(n)) and then
do the opposite =⇒ we have a separator!

We’ll describe the language A in terms of a decider D for it (a TM).

D must be different from any TM M that runs in o(f(n)) space.
Diagonalization: if input is 〈M〉, do opposite of M
(if input does not represent TM, don’t care =⇒ reject)

Proof of Space Hierarchy Theorem

Two technical details:
I Input M may not be a decider =⇒ must avoid nontermination

count steps while simulating M , reject if more than 2f(n)

(we know o(f(n)) space runs in 2o(f(n)) time)
I o(n) condition for M is true only for n ≥ n0.

run M on w for any input 〈M〉10k

(input will eventually be long enough for M to complete)

Space analysis

Must represent any M using D′ symbols: constant factor,
depending on M

Step counter only adds log f(n) space. =⇒ total O(f(n)) space.

Corollary: Space complexity classes

For any functions f1, f2 : N→ N, with f1(n) = o(f2(n)), and f2
space constructible, we have SPACE(f1(n)) (SPACE(f2(n)).

In particular, we have SPACE(nc1) (SPACE(nc2).
I for all naturals ci (since nc is space constructible)
I can prove nc is space constructible for rationals
I between any two reals we have two rationals

=⇒ different space complexity for any real c1, c2

NL (PSPACE

By Savitch’s theorem, NL ⊆ SPACE(log2 n) (SPACE(n)

In particular, TQBF /∈ NL, because it’s PSPACE-complete with
respect to log space reducibility

Time constructible functions

Informally:
t is time constructible if t(n) is computable in time O(t(n)).

Def. A function t : N→ N that is at least O(n log n) is time
constructible if t(n) is computable in time O(t(n)) from 1n.

Why ≥ O(n log n)? We’ve seen binary conversion needs this time.

Time Hierarchy Theorem
Time Hierarchy Theorem: For any time constructible function
t : N→ N, there exists a language that is decidable in O(t(n)) time
but not in time o(t(n)/ log t(n)).

Why log factor? Simulation may be done with constant factor for
space overhead, but not for time overhead:
tape head needs to move on input, more than constant per move

To keep moves efficient, divide tape into three tracks

1 2 3 1 2 3 1 2 3 1 2 3 . . .

1. information on M’s tape
2. M’s transition function, and current state
3. simulation time counter

Key: keep tracks 2 and 3 contents close to head position on track 1
(need to access them together)

track 2: constant space =⇒ constant time to move
track 3: O(log t(n)) space =⇒ O(log t(n)) time to move

Corollary: Time complexity classes

For any functions t1, t2 : N→ N, with t1(n) = o(t2(n)/ log t2(n)),
and t2 time constructible, we have TIME(t1(n)) (TIME(t2(n)).

In particular, we have TIME(nc1) (TIME(nc2) for any real
numbers 1 ≤ c1 < c2

P (EXPTIME

Exponential Space Completeness

Def A language B is EXPSPACE-complete if
1. B ∈ EXPSPACE
2. every A in EXPSPACE is polynomially reducible to B

We identify a particular language that’s EXPSPACE-complete.

Generalized regular expressions:
allow Rk as shorthand for R ·R · . . . ·R (k concatenations)

We show EQREX↑ is EXPSPACE-complete
(equivalence of two regexes with exponentiation)

Proof: EQREX↑ is in EXPSPACE

On input 〈R1, R2〉
1. Convert generalized to basic regexes B1, B2 (exponential space)

2. Convert B1, B2 to NFAs (linear space)

3. Check their equivalence

nondeterministic linear space
guess distinguishing string, like in ALLNFA
convert to O(n2) space deterministic by Savitch’s theorem

Proof: EQREX↑ is EXPSPACE-hard

Take any language A decided by TM M in SPACE(2nk)

Reduce using computation histories

R1 = ∆∗, with ∆ = Γ ∪Q ∪ {#} (configuration alphabet)

R2 = all strings which are not rejecting computation histories

Not equivalent precisely if M accepts w

Rejecting CH may have: bad start, bad middle (“window”), bad
reject

Exponentiation key to efficient encoding
e.g. all strings that don’t have # in position 2nk + 1: ∆2nk

∆#∆∗

