First transformation: Reachability

Given: graph G, nodes s, t
Goal: construct log space NTM that accepts if no $s \rightarrow t$ path

Rephrase as reachability:
find all nodes of G that are reachable from S.

Can’t store set of reachable nodes in $\log n$ space.
Could we count?
Assume we could know/guess count of reachable nodes.
Does this help?

Finding the count of reachable nodes

Idea: do BFS, count the nodes at each level
Let $A_i =$ set of nodes at level (distance) i from s in BFS
We will count $c_i = |A_i|$.
How? Like before: (again!) guess c_i and verify
Loop through all nodes in G, guess if in A_{i+1}.
How to check? Need to know predecessor in A_i.
Catch-22? Recurrence? No, can guess!

Check reachable nodes knowing count

Given any node u, we can check in $\log n$ space if reachable
this is PATH!

Idea: we can do this sequentially!
Iterate through all nodes, at each flip bit, guess if reachable.
if guessed unreachable, go to next
if guessed reachable and node is t, reject (don’t want that)
else verify: if not reachable, reject.
else increment count
Finally, check if count is expected value, accept/reject.

Summary: if nondeterministically:
we can select the right number of reachable nodes
and we did not select t
and each is indeed reachable
then we know the other nodes (incl. t) are not reachable, accept.

Finding node count at each level

We already know c_i (from previous iteration, $c_0 = 1$).
Will re-count and re-find them for each candidate for A_{i+1}

Compute $\{c_i \}_{i=0}^{m}$ (nodes of A_{i+1}):
loop through all nodes v (candidate for A_{i+1})
start re-counting A_i ($r_i = 0$)
loop through all v (candidate for A_i)
 guess if u in A_i
 check (guess path of length $\leq i$), reject if not
 else increment re-count r_i
 if edge (u, v), increment c_{i+1}, take next v
 if recount $r_i \neq c_i$, reject
We compute c_i until $c_{i+1} = c_i$ (at most c_m)
To implement, need these counters:

- i: counts distance/levels (A_i), up to $\leq m$
- c_i: count of level A_i
- c_{i+1}: count of next level
- temp counter to re-count/check c_i and c_m
- u, v: previous / current nodes

$L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

We’ll see $NL \not\subseteq PSPACE$
so P (separating them must be different from one of them).