
COMPSCI 501: Formal Language Theory
Lecture 28: NL = coNL

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

3 April 2019

NL = coNL: Surprising ?

coNL = set of problems / languages whose complement is in NL.

We’ve seen checking language A and A is asymmetric:

If A has easy certificate/witness that w ∈ A, then
A may require expensive exhaustive checking

Recall NP vs coNP: SAT, CLIQUE, etc.

We’ll prove PATH ∈ NL. Insights:
I Repeatedly decompose problem
I Use PATH as subproblem (in NL)!
I Extensively use guessing / nondeterminism

First transformation: Reachability

Given: graph G, nodes s, t
Goal: construct log space NTM that accepts if no s t path

Rephrase as reachability:
find all nodes of G that are reachable from S.

Can’t store set of reachable nodes in log n space.
Could we count?

Assume we could know/guess count of reachable nodes.
Does this help?

Check reachable nodes knowing count
Given any node u, we can check in log n space if reachable

this is PATH !

Idea: we can do this sequentially!

Iterate through all nodes, at each flip bit, guess if reachable.
if guessed unreachable, go to next
if guessed reachable and node is t, reject (don’t want that)
else verify: if not reachable, reject.
else increment count

Finally, check if count is expected value, accept/reject.

Summary: if nondeterministically:
we can select the right number of reachable nodes
and we did not select t
and each is indeed reachable

then we know the other nodes (incl. t) are not reachable, accept.

Finding the count of reachable nodes

Idea: do BFS, count the nodes reached after each level

Let Ai = set of nodes at distance at most i from s in BFS
We will count ci = |Ai|.
How? Like before: (again!) guess ci and verify

Loop through all nodes in G, guess if in Ai+1.
How to check? Need to know predecessor in Ai.
Catch-22? Recurrence? No, can guess!

Finding node count at each level

We already know ci (from previous iteration, c0 = 1).
Will re-count and re-find them for each candidate for Ai+1

Compute ci+1 (nodes of Ai+1):

loop through all nodes v (candidate for Ai+1)
start re-counting Ai (ri = 0)
loop through all u (candidate for Ai)
guess if u in Ai

check (guess path of length ≤ i), reject if not
else increment re-count ri

if edge (u, v), increment ci+1, take next v
if recount ri 6= ci, reject

We compute ci until ci+1 = ci (at most cm)

Review: this is log space

To implement, need these counters:
I i: counts distance (Ai), up to ≤ m
I ci: count of Ai (distance ≤ i)
I ci+1: count of Ai+!
I temp counter to re-count/check ci and cm

I u, v: previous / current nodes

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

We’ll see NL (PSPACE
so P (separating them must be different from one of them).

