COMPSCI 501: Formal Language Theory
Lecture 28: NL = coNL

Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

3 April 2019

NL = coNL: Surprising ?

coNL = set of problems / languages whose complement is in NL.

We've seen checking language A and A is asymmetric:

If A has easy certificate/witness that w € A, then
A may require expensive exhaustive checking

Recall NP vs coNP: SAT, CLIQUE, etc.

We'll prove PATH € NL. Insights:

» Repeatedly decompose problem
» Use PATH as subproblem (in NL)!
» Extensively use guessing / nondeterminism

First transformation: Reachability

Given: graph G, nodes s, t
Goal: construct log space NTM that accepts if no s ~ ¢ path

Rephrase as reachability:
find all nodes of G that are reachable from S.

Can't store set of reachable nodes in logn space.
Could we count?

Assume we could know/guess count of reachable nodes.
Does this help?

Check reachable nodes knowing count

Given any node u, we can check in log n space if reachable
this is PATH !

Idea: we can do this sequentially!

Iterate through all nodes, at each flip bit, guess if reachable.
if guessed unreachable, go to next
if guessed reachable and node is ¢, reject (don't want that)
else verify: if not reachable, reject.
else increment count
Finally, check if count is expected value, accept/reject.

Summary: if nondeterministically:
we can select the right number of reachable nodes
and we did not select ¢
and each is indeed reachable
then we know the other nodes (incl. t) are not reachable, accept.

Finding the count of reachable nodes

Idea: do BFS, count the nodes reached after each level

Let A; = set of nodes at distance at most ¢ from s in BFS
We will count ¢; = |4,]|.
How? Like before: (again!) guess ¢; and verify

Loop through all nodes in G, guess if in A;41.
How to check? Need to know predecessor in A;.
Catch-227 Recurrence? No, can guess!

Finding node count at each level

We already know ¢; (from previous iteration, co = 1).
Will re-count and re-find them for each candidate for A;

Compute ¢4 (nodes of A;41):

loop through all nodes v (candidate for A;1+1)
start re-counting A; (r; = 0)
loop through all u (candidate for A;)
guess if u in A;
check (guess path of length < 7), reject if not
else increment re-count r;
if edge (u,v), increment ¢;41, take next v
if recount r; # ¢;, reject

We compute ¢; until ¢;41 = ¢; (at most ¢;,)

Review: this is log space

To implement, need these counters:

> i: counts distance (A4;), up to <m

> ¢;: count of A; (distance < 1)

ci+1: count of A;q

temp counter to re-count/check ¢; and ¢,
u, v: previous / current nodes

vvyy

L € NL = coNL € P C NP C PSPACE C EXPTIME

We'll see NL C PSPACE
so P (separating them must be different from one of them).

