NL = coNL: Surprising?

coNL = set of problems / languages whose complement is in NL.
We’ve seen checking language \(A \) and \(\overline{A} \) is asymmetric:
If \(A \) has easy certificate/witness that \(w \in A \), then \(\overline{A} \) may require expensive exhaustive checking
Recall NP vs coNP: SAT, CLIQUE, etc.

We’ll prove \(PATH \in NL \). Insights:
▶ Repeatedly decompose problem
▶ Use PATH as subproblem (in NL)!
▶ Extensively use guessing / nondeterminism

First transformation: Reachability

Given: graph \(G \), nodes \(s, t \)
Goal: construct log space NTM that accepts if no \(s \leadsto t \) path

Rephrase as reachability:
find all nodes of \(G \) that are reachable from \(S \).

Can’t store set of reachable nodes in \(\log n \) space.
Could we count?
Assume we could know/guess count of reachable nodes.
Does this help?

Check reachable nodes knowing count

Given any node \(u \), we can check in \(\log n \) space if reachable
this is \(PATH \)!

Idea: we can do this sequentially!
Iterate through all nodes, at each flip bit, guess if reachable.
if guessed unreachable, go to next
if guessed reachable and node is \(t \), reject (don’t want that)
else verify: if not reachable, reject.
else increment count
Finally, check if count is expected value, accept/reject.

Summary: if nondeterministically:
we can select the right number of reachable nodes
and we did not select \(t \) and each is indeed reachable
then we know the other nodes (incl. \(t \)) are not reachable, accept.

Finding the count of reachable nodes

Idea: do BFS, count the nodes reached after each level
Let \(A_i \) = set of nodes at distance at most \(i \) from \(s \) in BFS
We will count \(c_i = |A_i| \).
How? Like before: (again!) guess \(c_i \) and verify
Loop through all nodes in \(G \), guess if in \(A_{i+1} \).
How to check? Need to know predecessor in \(A_i \).
Catch-22? Recurrence? No, can guess!

Finding node count at each level

We already know \(c_i \) (from previous iteration, \(c_0 = 1 \)).
Will re-count and re-find them for each candidate for \(A_{i+1} \)

Compute \(c_{i+1} \) (nodes of \(A_{i+1} \)):
loop through all nodes \(v \) (candidate for \(A_{i+1} \))
start re-counting \(A_i \) \((r_i = 0)\)
loop through all \(u \) (candidate for \(A_i \))
if edge \((u, v)\), increment \(c_{i+1} \), take next \(v \)
if recount \(r_i \neq c_i \), reject
We compute \(c_i \) until \(c_{i+1} = c_i \) (at most \(c_m \))
To implement, need these counters:

- \(i \): counts distance (\(A_i \)), up to \(\leq m \)
- \(c_i \): count of \(A_i \) (distance \(\leq i \))
- \(c_{i+1} \): count of \(A_{i+1} \)
- temp counter to re-count/check \(c_i \) and \(c_m \)
- \(u, v \): previous / current nodes

\(L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \)

We'll see \(NL \not\subseteq PSPACE \)
so \(P \) (separating them must be different from one of them).