	Why Logarithmic Space?
COMPSCI 501: Formal Language Theory	PSPACE is already a large class
Lecture 27: The classes L and NL. NL-completeness	in general, may be EXPTIME
	Less than linear space would imply not reading all input
Marius Minea marius@cs.umass.edu	e.g., binary search: but implies indexing, will not discuss now
University of Massachusetts Amherst	What about space <i>additional</i> to input?
University of MassaGuusetts Ammerst	(Even stronger: Online or streaming algorithms don't know all input at once, can't revisit)
	Can we implement with little <i>extra</i> memory? need a change in our computation model
1 April 2019	
The classes L and NL	Example: $0^k 1^k$
Consider Turing machine with	
input tape: read-only	Our solution so far: zig-zag and cross out, time $O(n^2)$ or $O(n \log n)$
can detect both left and right ends work tape: size determines space complexity	
For sublinear space, will only consider this model	We also discussed converting number to binary this only needs $O(\log n)$ extra space!
(for space $\geq n$, they are equivalent)	
Def. L = SPACE($\log n$): decidable in log space on deterministic TM	Compute number of zeroes on work tape (in binary). Subtract when counting ones.
$NL = SPACE(\log n)$: decidable in log space on ondeterministic TM	
	Time complexity? still $O(n \log n)$
$\log n$ bits: enough for index/pointer into input string \Rightarrow class L = maintaining a <i>constant number of pointers</i>	
\rightarrow class L $-$ maintaining a constant number of pointers	
PATH: the prototypical NL problem	Configurations on an input word
	To derive bounds, must redefine configuration structure.
	Def. Let M be a TM with separate read-only input tape.
$PATH = \{ \langle G, s, t \rangle \mid G \text{ is directed graph that has an } s \rightsquigarrow t \text{ path } \}$	A configuration of M on w is formed of state, work tape, and the position of the two tape heads.
$PATT = \{(G, s, t) G is directed graph that has all s \rightarrow t path \}We've seen PATH is in P, using linear space (BFS, DFS, etc.)$	Input is not part of configuration (it does not change).
Nondeterministic solution in log space:	In <i>M</i> runs in $f(n)$ space, number of work tape strings is $ \Gamma ^{f(n)}$.
▶ store current node u on work tape $O(\log n)$ bits	We have n positions for the input head, $f(n)$ positions for work tape head.
 nondeterministically guess next node from successors, replace u until reaching t or running for V steps. 	Number of configurations: $ Q nf(n) \Gamma ^{f(n)}$ which is $n2^{O(f(n))}$
	If $f(n) \ge \log n$, then $n \le 2^{f(n)}$, so $n 2^{O(f(n))}$ is $2^{O(f(n))}$
	Same argument extends condition in proof of Savitch's theorem:
	Configuration needs space $\log n 2^{O(f(n))} = \log n + O(f(n)).$
	If $f(n) \ge \log n$, this is $O(f(n))$

Log space reductions	NL-completeness
We want to define the same pattern of reductions. But a polynomial-time reduction could use polynomial space! \Rightarrow to reduce in log space.	Def. A language B is NL-complete if 1. $B \in NL$, and 2. every $A \in NL$ is log space reducible to B
Def. A log space transducer M is a TM with	
 a read-only input tape a read-write work tape of O(log n) symbols a write-only output tape (output stream) 	<i>Theorem</i> : If $A \leq_{L} B$ and $B \in L$, then $A \in L$. Can't just map w to $f(w)$, since $ f(w) $ may be $\geq \log w $ \Rightarrow must produce $f(w)$ on demand:
A log space computable function is a function $f: \Sigma^* \to \Sigma^*$ where $f(w)$ is the output tape contents after M halts on input w . $A <_1 B$: Language A is log-space reducible to language B if A is	M_A will simulate M_B . Every time machine M_B needs k^{th} symbol of $f(w)$, M_A restarts computation of f , up to that symbol.
mapping reducible to B by a log space computable function.	Time-space tradeoff !
Many reductions <i>can</i> be done in log space. (e.g., PSPACE to <i>TQBF</i>)	Corollary If any NL-complete language is in L, then $L = NL$.
PATH is NL-complete	$NL\subseteqP$
We already know <i>PATH</i> is in NL. Take arbitrary language $A \in NL$.	
Idea: construct graph G expressing acceptance of w by NTM $N_A.$	
Graph nodes are configurations on input w .	Proof: We can reduce any language in NL to <i>PATH</i> , and <i>PATH</i> \in P.
Edge (c_1, c_2) in G iff can move from c_1 to c_2 . Start and (unique) accept configurations become s and t .	Space $f(n) \Rightarrow$ time $n2^{O(f(n))}$ Thus, log space is polynomial time.
Clearly N_A accepts w iff there is an $s \rightsquigarrow t$ path in G . Can we do the reduction in log space?	Any language $A \in NL$ is reducible to a language in P (<i>PATH</i>), thus A is also in P.
Configurations take $c \log n$ space. List nodes: generate all $c \log n$ strings, output good encodings. Likewise, generate all possible pairs for edges. Test that (c_1, c_2) is a transition is in log space (only examine tapes at head positions in c_1).	$L\subseteqNL\subseteqP\subseteqNP\subseteqPSPACE\subseteqEXPTIME$