COMPSCI 501: Formal Language Theory Lecture 26: PSPACE-Completeness. Games Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	The Class PSPACEDef. PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine.PSPACE = $\bigcup_k SPACE(n^k)$ By Savitch's theorem, we have NSPACE = PSPACE.Space-Time ConstraintsAt most one cell per step: P \subseteq PSPACE and NP \subseteq NPSPACE = PSPACE $f(n)$ space $\Rightarrow \leq f(n)O(2^{f(n)})$ configurationsPSPACE \subseteq EXPTIMEP \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME
Def. A language B is PSPACE-complete if 1. it is in PSPACE 2. any A in PSPACE is polynomial time reducible to B Just condition 2: PSPACE-hard (may be harder than PSPACE) Reduction is still polynomial time (NOT space). Why ? Want reduction to be easy (A and B still qualitatively similar) Increasing space by factor c might mean time increase by c^n !!	We've seen quantifiers in <i>predicate logic</i> : $\forall x \exists y P(x, y)$ x, y, \ldots : variables taking values from some <i>universe</i> In general: infinite set of interpretations, can't decide by (semantic) evaluation, need (syntactic) proofs. Simpler: quantifiers over <i>propositional formulas</i> : $\forall x \exists y[(x \lor y) \land (\bar{x} \lor \bar{y})]$ true $\exists x \forall y[(x \lor y) \land (\bar{x} \lor \bar{y})]$ false Can always bring to prenex normal form (all quantifiers in front) Fully quantified formula (<i>sentence</i> , all vars <i>bound</i>): true or false $TQBF = \{\langle \phi \rangle \mid \phi \text{ is a fully quantified Boolean formula }\}$
TQBF is PSPACE-complete Easy part: in PSPACE. if $\phi = \forall x \psi$, evaluate $\psi[x \leftarrow 0] \land \psi[x \leftarrow 1]$ else if $\phi = \exists x \psi$, evaluate $\psi[x \leftarrow 0] \lor \psi[x \leftarrow 1]$ else ϕ must be constant expression, evaluate Space: depth of stack, store one variable each \Rightarrow linear space	Part 2: TQBF is PSPACE-hardLet A be a language decided by M in space n^k . Map any string to QBF that is true iff M accepts w.Space $f(n) = n^k \Rightarrow$ no more than $2^{df(n)}$ configurations.Construct formula $\phi_{c_1,c_2,t}$ meaning: M can go from config c_1 to c_2 in at most t steps.Top-level acceptance: $\phi_{cstart,caccept,h}$, with $h = 2^{df(n)}$ Base case: $t = 1$: $c_1 = c_2$ or $c_1 \mapsto c_2$ in one step of M Can write boolean formula like in Cook-Levin theorem.Recursion: split into $\lfloor t/2 \rfloor$ and $\lceil t/2 \rceil$: there must exist an intermediate configuration m_1
	Can write boolean formula like in Cook-Levin theorem. Recursion: split into $\lfloor t/2 \rfloor$ and $\lceil t/2 \rceil$: there must exist an intermediate configuration m_1

Keeping the formula linear-size

First try: $\phi_{c_1,c_2,t} = \exists m_1[\phi_{c_1,m_1,t/2} \land \phi_{m_1,c_2,t/2}]$ Does not work: formula size doubles at each level.

Keeping it linear: factor out formula, use quantifiers $\phi_{c_1,c_2,t} = \exists m_1 \forall (c_3,c_4) \in \{(c_1,m_1),(m_1,c_2)\} \phi_{c_3,c_4,t/2}$ Quantifier part added is linear in configuration size, so O(f(n)). Number of levels: $\log 2^{df(n)}$, thus O(f(n))Total formula size: $O(f^2(n))$, can be built in polynomial time

Winning Strategies for Games

Consider a QBF with alternating quantifiers.

 $\exists x_1 \forall x_2 \exists x_3 \dots \psi$

Players E and A alternate selecting values for the variable.

Player E wins if in the end, the formula is true. Player A wins if in the end, the formula is false.

Does player E have a winning strategy?

This is exactly equivalent to TQBF!

(If formula is not alternating, players may make consecutive moves. Can also insert quantifiers for dummy variables)

Geography Game on Directed Graph

Player who can't move, loses. No repetitions allowed. GG is in PSPACE:

Geography Game is PSPACE-hard: reduce from TQBF

FIGURE **8.16** Full structure of the geography game simulating the formula game, where $\phi = \exists x_1 \forall x_2 \cdots \exists x_k [(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3} \lor \cdots) \land ()]$ Build game from formula. (Assume \exists at start and end) Structure forces alternation.

First pass determines value.

Tree structure forces win: P2 chooses clause P1 chooses literal

Can force side already played, other player loses.