	Space Complexity
COMPSCI 501: Formal Language Theory Lecture 25: Space Complexity. Savitch's Theorem Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	Practically important; often bottleneck, rather than time Still use TM as model (but we'll see some variants) Def. Let M be a deterministic TM that halts on all inputs. The space complexity of M is the function $f : \mathbb{N} \to \mathbb{N}$, giving the maximum number of tape cells that M scans on an input of length n . We say M runs in space $f(n)$. For a nondeterministic TM where all branches halt on all inputs: $f(n) = \max$. number of cells scanned on any branch, on length n input
Space Complexity Classes	Example: SAT is linear space
$\begin{aligned} & SPACE(f(n)) = \{L \mid L \text{ is a language decided by an } O(f(n)) \text{ space } \\ & deterministic TM \}. \\ & NSPACE(f(n)) = \{L \mid L \text{ is a language decided by an } O(f(n)) \\ & space \textit{ nondeterministic } TM \}. \end{aligned}$	SAT is NP-complete, but it can be solved in linear space! • iterate over all truth assignments of $x_1, \ldots x_m$ • evaluate formula on truth assignment, <i>accept</i> if true • <i>reject</i> if assignments exhausted Space? Need to store assignment: 101110001101 $O(m)$ space, thus $O(n)$ in formula size $(m \le n)$ Switch to next assignment: increment binary number (no extra space)
Example: ALL_{NFA} in NSPACE(n)A class of problems: given an acceptor (DFA/NFA/PDA etc.) and some decidable property, find space (time) complexity of checking it. $ALL_{NFA} = \{\langle M \rangle \mid M \text{ is an NFA and } L(M) = \Sigma^*\}$ Easier to decide complement: find string that's not accepted by M . Do it nondeterministically. M is NFA: must keep set of markers to potential current states. $N =$ "on input $\langle M \rangle$: 1. choose length k of string (how long? TBD) 2. repeat k times 3. nondeterministically choose a symbol and move state markers 4. if any marker on accepting state, accept 5. reject if strings exhaustedMax string length: 2^q (q = number of states of M). 2^q marker combinations \Rightarrow longer string repeats one \Rightarrow can shorten. Space needed: for marker (q bits) and counter (q bits) $\Rightarrow O(n)$	Savitch's Theorem Theorem: For any function $f : \mathbb{N} \to \mathbb{R}^+$, where $f(n) \ge n$, $NSPACE(f(n)) \subseteq SPACE(f^2(n))$ Anything that can be done nondeterministically in space $f(n)$ can be done deterministically in space $f^2(n)$). Will see later that $f(n) \ge \log n$ suffices. Straightforward approach does not work: $f(n)$ space may run for $O(2^{f(n)})$ time. Must record nondeterministic choice a <i>each</i> step. $\Rightarrow O(2^{f(n)})$ space

A Simpler Problem: Graph Connectivity

Is there a path from s to t in graph G?

STCON: Given a graph G, a node s and a node t, and a length l, is there a path of length $\leq l$ from s to t in G?

Solve? BFS. Space? ${\cal O}(|V|)$ (remember visited nodes). Can we do better?

Yes, divide and conquer! Nondeterministically choose an intermediate node u. Check STCON(s, u, l/2) and STCON(u, t, l - l/2)

Space? Recursion depth is $O(\log n).$ Parameters: node numbers, take $O(\log n)$ bits.

Total: $O(\log^2 n)$.

The Class PSPACE

Def. PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine.

$$\mathsf{PSPACE} = \bigcup_k \mathsf{SPACE}(n^k)$$

By Savitch's theorem, we have NSPACE = PSPACE.

Space-Time Constraints

At most one cell per step: P \subseteq PSPACE and NP \subseteq NPSPACE = PSPACE

 $f(n) \ {\rm space} \Rightarrow \leq f(n) O(2^{f(n)}) \ {\rm configurations}$

 $\mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$

 $\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}=\mathsf{NPSPACE}\subseteq\mathsf{EXPTIME}$

Proof of Savitch's Theorem

Can an NTM N get from configuration c_1 to c_2 in t steps with f(n) space? CANYIELD (c_1, c_2, t) .

- if t = 1, check if $c_2 = c_1$ or there is an NTM transition $c_1 \rightarrow c_2$, accept/reject accordingly.
- ▶ else (t > 1), for each config. c_m of N, with f(n) space ▶ accept if both CANYIELD $(c_1, c_m, t/2)$ and CANYIELD $(c_m, c_2, t/2)$ accept
- ▶ if all c_m exhausted, reject

Space complexity?

N has no more than $2^{df(n)}$ configurations for some d.

Recursion depth: initial t is $2^{df(n)}$, so $O(\log 2^{df(n)}) = O(f(n))$

Stack space: for c_1, c_2 and t, also O(f(n)). Thus $O(f^2(n))$.

Need to know f(n) for the initial call: check 1, 2, \ldots successively