Space Complexity

Practically important; often bottleneck, rather than time
Still use TM as model (but we’ll see some variants)

Def. Let \(M \) be a deterministic TM that halts on all inputs. The space complexity of \(M \) is the function \(f : \mathbb{N} \to \mathbb{R}^+ \), giving the maximum number of tape cells that \(M \) scans on an input of length \(n \).

We say \(M \) runs in space \(f(n) \).

For a nondeterministic TM where all branches halt on all inputs:

\[f(n) = \max \text{ number of cells scanned on any branch, on length } n \]

Switch to next assignment: increment binary number (no extra space)

Example: SAT is linear space

SAT is NP-complete, but it can be solved in linear space!

\[\text{iterate over all truth assignments of } x_1, \ldots, x_m \]
\[\text{evaluate formula on truth assignment, accept if true} \]
\[\text{reject if assignments exhausted} \]

Space? Need to store assignment: 10111000...1101

\[O(m) \text{ space, thus } O(n) \text{ in formula size } (m \leq n) \]

Switch to next assignment: increment binary number

(no extra space)

Example: \(\text{ALL}_{NFA} \) in \(\text{NSPACE}(n) \)

A class of problems: given an acceptor (DFA/NFA/PDA etc.) and some decidable property, find space (time) complexity of checking it.

\[\text{ALL}_{NFA} = \{ \langle M \rangle \mid M \text{ is an NFA and } L(M) = \Sigma^* \} \]

Easier to decide complement: find string that’s not accepted by \(M \). Do it nondeterministically.

\(M \) is NFA: must keep set of markers to potential current states.

\(\mathcal{N} = \) on input \(\langle M \rangle \):
1. choose length \(k \) of string (how long? TBD)
2. repeat \(k \) times
3. nondeterministically choose a symbol and move state markers
4. if any marker on accepting state, accept
5. reject if strings exhausted

Max string length: \(2^q \) (\(q \) number of states of \(M \)).

\(2^q \) marker combinations ⇒ longer string repeats one ⇒ can shorten.

Space needed: for marker (\(q \) bits) and counter (\(q \) bits) ⇒ \(O(n) \)

Savitch’s Theorem

Theorem: For any function \(f : \mathbb{N} \to \mathbb{R}^+ \), where \(f(n) \geq n \),

\[\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)) \]

Anything that can be done nondeterministically in space \(f(n) \) can be done deterministically in space \(f^2(n) \).

Will see later that \(f(n) \geq \log n \) suffices.

Straightforward approach does not work:

\(f(n) \) space may run for \(O(2^{f(n)}) \) time.

Must record nondeterministic choice a each step. \(\Rightarrow O(2^{f(n)}) \) space
A Simpler Problem: Graph Connectivity

Is there a path from \(s \) to \(t \) in graph \(G \)?

STCON: Given a graph \(G \), a node \(s \) and a node \(t \), and a length \(l \), is there a path of length \(\leq l \) from \(s \) to \(t \) in \(G \)?

- **Solve?** BFS. **Space?** \(O(|V|) \) (remember visited nodes).
- **Can we do better?**
 - Yes, divide and conquer!
 - Nondeterministically choose an intermediate node \(u \).
 - Check \(\text{STCON}(s, u, l/2) \) and \(\text{STCON}(u, t, l - l/2) \)
- **Space?** Recursion depth is \(O(\log n) \).
- **Parameters:** node numbers, take \(O(\log n) \) bits.
- **Total:** \(O(\log^2 n) \).

Proof of Savitch’s Theorem

Can an NTM \(N \) get from configuration \(c_1 \) to \(c_2 \) in \(t \) steps with \(f(n) \) space?

- **CANYIELD(\(c_1, c_2, t \)).**
 - \(t = 1 \), check if \(c_2 = c_1 \) or there is an NTM transition \(c_1 \rightarrow c_2 \), accept/reject accordingly.
 - \(t > 1 \), for each config. \(c_m \) of \(N \), with \(f(n) \) space
 - accept if both \(\text{CANYIELD}(c_1, c_m, t/2) \) and \(\text{CANYIELD}(c_m, c_2, t/2) \) accept
 - if all \(c_m \) exhausted, reject
- **Space complexity?**
 - \(N \) has no more than \(2^{f(n)} \) configurations for some \(d \).
 - Recursion depth: initial \(t \) is \(2^{f(n)} \), so \(O(\log 2^{f(n)}) = O(f(n)) \)
 - Stack space: for \(c_1, c_2 \) and \(t \), also \(O(f(n)) \). Thus \(O(f^2(n)) \).
 - Need to know \(f(n) \) for the initial call: check 1, 2, \ldots successively

The Class PSPACE

Def. PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine.

\[
PSPACE = \bigcup_k \text{SPACE}(n^k)
\]

By Savitch’s theorem, we have NSPACE = PSPACE.

Space-Time Constraints

At most one cell per step:
- \(P \subseteq \text{PSPACE} \) and \(\text{NP} \subseteq \text{NPSPACE} = \text{PSPACE} \)
- \(f(n) \) space \(\Rightarrow \leq f(n)O(2^{f(n)}) \) configurations
- \(\text{PSPACE} \subseteq \text{EXPTIME} \)

\[
P \subseteq \text{NP} \subseteq \text{PSPACE} = \text{NPSPACE} \subseteq \text{EXPTIME}
\]