
COMPSCI 501: Formal Language Theory
Lecture 25: Space Complexity. Savitch’s Theorem

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

27 March 2019

Space Complexity

Practically important; often bottleneck, rather than time

Still use TM as model (but we’ll see some variants)

Def. Let M be a deterministic TM that halts on all inputs.
The space complexity of M is the function f : N→ N, giving the
maximum number of tape cells that M scans on an input of length
n.

We say M runs in space f(n).

For a nondeterministic TM where all branches halt on all inputs:
f(n) = max. number of cells scanned on any branch, on length n
input

Space Complexity Classes

SPACE(f(n)) = {L | L is a language decided by an O(f(n)) space
deterministic TM }.

NSPACE(f(n)) = {L | L is a language decided by an O(f(n))
space nondeterministic TM }.

Example: SAT is linear space

SAT is NP-complete, but it can be solved in linear space!
I iterate over all truth assignments of x1, . . . xm

I evaluate formula on truth assignment, accept if true
I reject if assignments exhausted

Space? Need to store assignment: 10111000. . . 1101
O(m) space, thus O(n) in formula size (m ≤ n)

Switch to next assignment: increment binary number
(no extra space)

Example: ALLNFA in NSPACE(n)
A class of problems: given an acceptor (DFA/NFA/PDA etc.) and
some decidable property, find space (time) complexity of checking it.

ALLNFA = {〈M〉 |M is an NFA and L(M) = Σ∗}
Easier to decide complement: find string that’s not accepted by M .
Do it nondeterministically.

M is NFA: must keep set of markers to potential current states.

N = "on input 〈M〉:
1. choose length k of string (how long? TBD)
2. repeat k times
3. nondeterministically choose a symbol and move state markers
4. if any marker on accepting state, accept
5. reject if strings exhausted

Max string length: 2q (q = number of states of M).
2q marker combinations ⇒ longer string repeats one ⇒ can shorten.

Space needed: for marker (q bits) and counter (q bits) ⇒ O(n)

Savitch’s Theorem

Theorem: For any function f : N→ R+, where f(n) ≥ n,
NSPACE(f(n)) ⊆ SPACE(f2(n))

Anything that can be done nondeterministically in space f(n) can
be done deterministically in space f2(n)).
Will see later that f(n) ≥ log n suffices.

Straightforward approach does not work:

f(n) space may run for O(2f(n)) time.
Must record nondeterministic choice a each step. ⇒ O(2f(n)) space

A Simpler Problem: Graph Connectivity

Is there a path from s to t in graph G?

STCON: Given a graph G, a node s and a node t, and a length l, is
there a path of length ≤ l from s to t in G?

Solve? BFS. Space? O(|V |) (remember visited nodes).
Can we do better?

Yes, divide and conquer!
Nondeterministically choose an intermediate node u.
Check STCON(s, u, l/2) and STCON(u, t, l − l/2)

Space? Recursion depth is O(log n).
Parameters: node numbers, take O(log n) bits.

Total: O(log2 n).

Proof of Savitch’s Theorem

Can an NTM N get from configuration c1 to c2 in t steps with f(n)
space? CANYIELD(c1, c2, t).
I if t = 1, check if c2 = c1 or there is an NTM transition

c1 → c2, accept/reject accordingly.
I else (t > 1), for each config. cm of N , with f(n) space

I accept if both CANYIELD(c1, cm, t/2) and
CANYIELD(cm, c2, t/2) accept

I if all cm exhausted, reject

Space complexity?

N has no more than 2df(n) configurations for some d.

Recursion depth: initial t is 2df(n), so O(log 2df(n)) = O(f(n))

Stack space: for c1, c2 and t, also O(f(n)). Thus O(f2(n)).

Need to know f(n) for the initial call: check 1, 2, . . . successively

The Class PSPACE
Def. PSPACE is the class of languages that are decidable in
polynomial space on a deterministic Turing machine.

PSPACE =
⋃

k

SPACE(nk)

By Savitch’s theorem, we have NSPACE = PSPACE.

Space-Time Constraints

At most one cell per step:
P ⊆ PSPACE and NP ⊆ NPSPACE = PSPACE

f(n) space ⇒ ≤ f(n)O(2f(n)) configurations

PSPACE ⊆ EXPTIME

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

