
COMPSCI 501: Formal Language Theory
Lecture 24: NP-complete Problems

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

25 March 2019

Reducing from 3SAT

To show a problem Q is NP-complete, we can show
1. Q is in NP
2. 3SAT ≤P Q

3SAT is a good candidate: its structure is simple and regular

Many reductions use gadgets: fragments of the target problem that
can represent variables and clauses.

We need to:
I force each clause to be satisfied
I force consistency (exactly one of xi and xi true

Karp’s 21 NP-complete Problems (1972) Vertex Cover
A vertex cover of a graph G is a set of nodes that contains an
endpoint of every edge (“covers all edges”).

Given G and k, does G has a vertex cover of size k ?

Intuition:
I one “triangles” for each clause: must choose ≥ 2 nodes

make one node dependent on satisfying formula
I one node per literal (xi and xi)

connect to all literal occurrences

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 313

The gadgets for the clauses are a bit more complex. Each clause gadget is a
triple of nodes that are labeled with the three literals of the clause. These three
nodes are connected to each other and to the nodes in the variable gadgets that
have the identical labels. Thus, the total number of nodes that appear in G is
2m + 3l, where φ has m variables and l clauses. Let k be m + 2l.

For example, if φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2), the
reduction produces ⟨G, k⟩ from φ, where k = 8 and G takes the form shown in
the following figure.

FIGURE 7.45

The graph that the reduction produces from
φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

To prove that this reduction works, we need to show that φ is satisfiable if and
only if G has a vertex cover with k nodes. We start with a satisfying assignment.
We first put the nodes of the variable gadgets that correspond to the true literals
in the assignment into the vertex cover. Then, we select one true literal in every
clause and put the remaining two nodes from every clause gadget into the vertex
cover. Now we have a total of k nodes. They cover all edges because every vari-
able gadget edge is clearly covered, all three edges within every clause gadget are
covered, and all edges between variable and clause gadgets are covered. Hence
G has a vertex cover with k nodes.

Second, if G has a vertex cover with k nodes, we show that φ is satisfiable
by constructing the satisfying assignment. The vertex cover must contain one
node in each variable gadget and two in every clause gadget in order to cover the
edges of the variable gadgets and the three edges within the clause gadgets. That
accounts for all the nodes, so none are left over. We take the nodes of the vari-
able gadgets that are in the vertex cover and assign TRUE to the corresponding
literals. That assignment satisfies φ because each of the three edges connecting
the variable gadgets with each clause gadget is covered, and only two nodes of
the clause gadget are in the vertex cover. Therefore, one of the edges must be
covered by a node from a variable gadget and so that assignment satisfies the
corresponding clause.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Vertex Cover

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 313

The gadgets for the clauses are a bit more complex. Each clause gadget is a
triple of nodes that are labeled with the three literals of the clause. These three
nodes are connected to each other and to the nodes in the variable gadgets that
have the identical labels. Thus, the total number of nodes that appear in G is
2m + 3l, where φ has m variables and l clauses. Let k be m + 2l.

For example, if φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2), the
reduction produces ⟨G, k⟩ from φ, where k = 8 and G takes the form shown in
the following figure.

FIGURE 7.45

The graph that the reduction produces from
φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

To prove that this reduction works, we need to show that φ is satisfiable if and
only if G has a vertex cover with k nodes. We start with a satisfying assignment.
We first put the nodes of the variable gadgets that correspond to the true literals
in the assignment into the vertex cover. Then, we select one true literal in every
clause and put the remaining two nodes from every clause gadget into the vertex
cover. Now we have a total of k nodes. They cover all edges because every vari-
able gadget edge is clearly covered, all three edges within every clause gadget are
covered, and all edges between variable and clause gadgets are covered. Hence
G has a vertex cover with k nodes.

Second, if G has a vertex cover with k nodes, we show that φ is satisfiable
by constructing the satisfying assignment. The vertex cover must contain one
node in each variable gadget and two in every clause gadget in order to cover the
edges of the variable gadgets and the three edges within the clause gadgets. That
accounts for all the nodes, so none are left over. We take the nodes of the vari-
able gadgets that are in the vertex cover and assign TRUE to the corresponding
literals. That assignment satisfies φ because each of the three edges connecting
the variable gadgets with each clause gadget is covered, and only two nodes of
the clause gadget are in the vertex cover. Therefore, one of the edges must be
covered by a node from a variable gadget and so that assignment satisfies the
corresponding clause.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Assume m variables and c clauses. We choose k = m + 2c

If formula is satisfiable, mark true literals (m).
all their edges to clauses and complements are covered

Must still cover:
all clause edges
all edges from complements to clauses

In each clause, don’t mark one literal in the cover,
but mark the other two (total: 2c)

covers all triangles, and edges to unmarked variable nodes

Conversely, a vertex cover with k = m + 2c must have two nodes
per clause gadget and one node per variable gadget ⇒ satisfiable

Hamiltonian Path

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 315

We represent each clause of φ as a single node, as follows.

FIGURE 7.48

Representing the clause cj as a node

The following figure depicts the global structure of G. It shows all the ele-
ments of G and their relationships, except the edges that represent the relation-
ship of the variables to the clauses that contain them.

FIGURE 7.49

The high-level structure of G

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 315

We represent each clause of φ as a single node, as follows.

FIGURE 7.48

Representing the clause cj as a node

The following figure depicts the global structure of G. It shows all the ele-
ments of G and their relationships, except the edges that represent the relation-
ship of the variables to the clauses that contain them.

FIGURE 7.49

The high-level structure of G

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

I one node per clause
(k)

I one “diamond” per
variable

I 3k + 1 inner nodes
per diamond
(a pair per clause +
one separator)



Hamiltonian Path
Connect clause nodes to gadgets for each member variable

xi in clause forces traversal left to right

316 CHAPTER 7 / TIME COMPLEXITY

Next, we show how to connect the diamonds representing the variables to the
nodes representing the clauses. Each diamond structure contains a horizontal
row of nodes connected by edges running in both directions. The horizontal
row contains 3k+1 nodes in addition to the two nodes on the ends belonging to
the diamond. These nodes are grouped into adjacent pairs, one for each clause,
with extra separator nodes next to the pairs, as shown in the following figure.

FIGURE 7.50

The horizontal nodes in a diamond structure

If variable xi appears in clause cj , we add the following two edges from the
jth pair in the ith diamond to the jth clause node.

FIGURE 7.51

The additional edges when clause cj contains xi

If xi appears in clause cj , we add two edges from the jth pair in the ith dia-
mond to the jth clause node, as shown in Figure 7.52.

After we add all the edges corresponding to each occurrence of xi or xi in
each clause, the construction of G is complete. To show that this construction
works, we argue that if φ is satisfiable, a Hamiltonian path exists from s to t; and,
conversely, if such a path exists, φ is satisfiable.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

xi in clause forces traversal left to right
7.5 ADDITIONAL NP-COMPLETE PROBLEMS 317

FIGURE 7.52

The additional edges when clause cj contains xi

Suppose that φ is satisfiable. To demonstrate a Hamiltonian path from s to
t, we first ignore the clause nodes. The path begins at s, goes through each
diamond in turn, and ends up at t. To hit the horizontal nodes in a diamond,
the path either zig-zags from left to right or zag-zigs from right to left; the
satisfying assignment to φ determines which. If xi is assigned TRUE, the path
zig-zags through the corresponding diamond. If xi is assigned FALSE, the path
zag-zigs. We show both possibilities in the following figure.

FIGURE 7.53

Zig-zagging and zag-zigging through a diamond, as determined by the
satisfying assignment

So far, this path covers all the nodes in G except the clause nodes. We can
easily include them by adding detours at the horizontal nodes. In each clause,
we select one of the literals assigned TRUE by the satisfying assignment.

If we selected xi in clause cj , we can detour at the jth pair in the ith diamond.
Doing so is possible because xi must be TRUE, so the path zig-zags from left to
right through the corresponding diamond. Hence the edges to the cj node are
in the correct order to allow a detour and return.

Similarly, if we selected xi in clause cj , we can detour at the jth pair in the
ith diamond because xi must be FALSE, so the path zag-zigs from right to left
through the corresponding diamond. Hence the edges to the cj node again are

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Hamiltonian Path

Clause nodes can only be covered from their variable gadgets

A “diamond” can be traversed to the right or to the left, not both
variable is either true or false, only covers corresponding clauses

Can’t return from clause node to different diamond,
because then the nodes between clause pairs won’t be covered.

316 CHAPTER 7 / TIME COMPLEXITY

Next, we show how to connect the diamonds representing the variables to the
nodes representing the clauses. Each diamond structure contains a horizontal
row of nodes connected by edges running in both directions. The horizontal
row contains 3k+1 nodes in addition to the two nodes on the ends belonging to
the diamond. These nodes are grouped into adjacent pairs, one for each clause,
with extra separator nodes next to the pairs, as shown in the following figure.

FIGURE 7.50

The horizontal nodes in a diamond structure

If variable xi appears in clause cj , we add the following two edges from the
jth pair in the ith diamond to the jth clause node.

FIGURE 7.51

The additional edges when clause cj contains xi

If xi appears in clause cj , we add two edges from the jth pair in the ith dia-
mond to the jth clause node, as shown in Figure 7.52.

After we add all the edges corresponding to each occurrence of xi or xi in
each clause, the construction of G is complete. To show that this construction
works, we argue that if φ is satisfiable, a Hamiltonian path exists from s to t; and,
conversely, if such a path exists, φ is satisfiable.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Undirected Hamiltonian Path

Reduce directed HAMPATH s t to UHAMPATH.

Force direction in undirected graph by converting each node u into
connected triple uin, umid, uout.
Transform s to sout and t to tin. Call new graph G′.

For each edge u→ v, introduce edge uout — vin.

Clearly any directed s t Hamiltonian path passes through all
triples.

Conversely, any UHAMPATH in G′ must start at sout and go to
some uin.
The next node must be umid, otherwise it will be skipped.
The only connection is then to uout

We can repeat the argument by induction.

Subset Sum
Subset Sum: Given a collection of integers xi and a target integer
t, is there a subcollection that adds to t?

Reduction from 3-SAT. (l variables, k clauses, base 10).
I All numbers have l + k digits
I Digits 1 to l: For variable xi, create two items ti, fi

I Both have ith digit equal to 1
I All other numbers have this digit zero
I ith digit of t = 1 ⇒ must select exactly one of ti, fi

I The l + jth digit corresponds to clause cj

I If xi ∈ cj , set l + jth digit of ti = 1
I If ¬xi ∈ cj , set l + jth digit of fi = 1
I Everything else 0.

I Choose t with first l digits 1 and last k digits 3
I Create two “dummy” integers gj , hj with 1 in position l + j

Subset Sum Example
Example.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
∧ (x1 ∨ x2 ∨ ¬x3)

int 1 2 3 4 5 6 7
t1 1 0 0 1 0 0 1
f1 1 0 0 0 1 1 0
t2 0 1 0 0 1 0 1
f2 0 1 0 1 0 1 0
t3 0 0 1 1 0 1 0
f3 0 0 1 0 1 0 1
t 1 1 1 3 3 3 3

int 1 2 3 4 5 6 7
g1 0 0 0 1 0 0 0
h1 0 0 0 1 0 0 0
g2 0 0 0 0 1 0 0
h2 0 0 0 0 1 0 0
g3 0 0 0 0 0 1 0
h3 0 0 0 0 0 1 0
g4 0 0 0 0 0 0 1
h4 0 0 0 0 0 0 1

Subset Sum Reduction
⇒
Consider a satisfying assignment.

Choose integer ti if xi true, and fi if xi false.
First l columns add up.

In last k columns, sum is between 1 and 3 (number of literals true
per clause). Select 0 to 2 of the numbers gj , hj to make the sum in
column l + j equal to 3.

⇐
Consider a collection adding up to t.

If must contain exactly one of ti, fi.

Since each of the last k columns adds to 3, and at most two
numbers gj , hj were used, each column (clause) must have another
1 (satisfying assignment).


