

Hamiltonian Path

Connect clause nodes to gadgets for each member variable

 $\overline{x_i}$ in clause forces traversal left to right

Undirected Hamiltonian Path

Reduce directed HAMPATH $s \rightsquigarrow t$ to UHAMPATH.

Force direction in undirected graph by converting each node u into connected triple $u^{\rm in},\ u^{\rm mid},\ u^{\rm out}.$

Transform s to s^{out} and t to t^{in} . Call new graph G'.

For each edge $u \rightarrow v$, introduce edge $u^{\text{out}} - v^{\text{in}}$.

Clearly any directed $s \rightsquigarrow t$ Hamiltonian path passes through all triples.

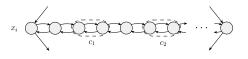
Conversely, any UHAMPATH in G^\prime must start at $s^{\rm out}$ and go to some $u^{\rm in}.$

The next node must be u^{mid} , otherwise it will be skipped. The only connection is then to u^{out}

We can repeat the argument by induction.

Subset Sum Example

Example.


$$(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \\ \land (x_1 \lor x_2 \lor \neg x_3)$$

int	1	2	3	4	5	6	7	int	1	2	3	4	5	6	7
t_1	1	0	0	1	0	0	1	g_1	0	0	0	1	0	0	0
f_1	1	0	0	0	1	1	0	h_1	0	0	0	1	0	0	0
t_2	0	1	0	0	1	0	1	g_2	0	0	0	0	1	0	0
f_2	0	1	0	1	0	1	0	h_2	0	0	0	0	1	0	0
t_3	0	0	1	1	0	1	0	g_3	0	0	0	0	0	1	0
f_3	0	0	1	0	1	0	1	h_3	0	0	0	0	0	1	0
t	1	1	1	3	3	3	3	g_4	0	0	0	0	0	0	1
	I			1				h_4	0	0	0	0	0	0	1

Hamiltonian Path

Clause nodes can only be covered from their variable gadgets

- A "diamond" can be traversed to the right or to the left, not both variable is either true or false, only covers corresponding clauses
- Can't return from clause node to different diamond, because then the nodes between clause pairs won't be covered.

Subset Sum

Subset Sum: Given a collection of integers x_i and a target integer t, is there a subcollection that adds to t?

Reduction from 3-SAT. (l variables, k clauses, base 10).

- ▶ All numbers have l + k digits
- **b** Digits 1 to *l*: For variable x_i , create two items t_i, f_i
 - Both have ith digit equal to 1
 - All other numbers have this digit zero
 - ▶ *i*th digit of $t = 1 \Rightarrow$ must select exactly one of t_i, f_i
- The l + jth digit corresponds to clause c_i
 - If $x_i \in c_j$, set l + jth digit of $t_i = 1$
 - If $\neg x_i \in c_j$, set l + jth digit of $f_i = 1$
 - Everything else 0.
- Choose t with first l digits 1 and last k digits 3
- Create two "dummy" integers g_j, h_j with 1 in position l + j

Subset Sum Reduction

 \Rightarrow

Consider a satisfying assignment.

Choose integer t_i if x_i true, and f_i if x_i false. First l columns add up.

In last k columns, sum is between 1 and 3 (number of literals true per clause). Select 0 to 2 of the numbers g_j,h_j to make the sum in column l+j equal to 3.

 \Leftarrow

Consider a collection adding up to t.

If must contain exactly one of t_i , f_i .

Since each of the last k columns adds to 3, and at most two numbers g_j , h_j were used, each column (clause) must have another 1 (satisfying assignment).