COMPSCI 501: Formal Language Theory

Lecture 24: NP-complete Problems
Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

25 March 2019

Reducing from 35AT

To show a problem @ is NP-complete, we can show
1. Qisin NP
2. 35AT <p Q

3SAT is a good candidate: its structure is simple and regular

Many reductions use gadgets: fragments of the target problem that
can represent variables and clauses.

We need to:

> force each clause to be satisfied
> force consistency (exactly one of z; and T; true

Karp's 21 NP-complete Problems (1972)

/ S“ISF!ABILI"\

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT

PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET
COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK ~DIRECTED
NODE SET ARC SET HAMILTON ¢ SET 5332; gé‘llggli
crrcurr COVERING
3-DIMENSIONAL HITTING STEINER
KN,
UNDIRECTED MATCHING UPSACK T gey TREE
HAMILTON

CIRCUIT
SEQUENCING ~PARTITION

MAX CUT

FIGURE 1 - Complete Problems

dUVN W QUVHOI

Vertex Cover

A vertex cover of a graph G is a set of nodes that contains an
endpoint of every edge (“covers all edges”).

Given GG and k, does GG has a vertex cover of size k ?
Intuition:

» one “triangles” for each clause: must choose > 2 nodes
make one node dependent on satisfying formula

» one node per literal (z; and 7)
connect to all literal occurrences

Vertex Cover

Assume m variables and ¢ clauses. We choose k = m + 2¢

If formula is satisfiable, mark true literals (m).

all their edges to clauses and complements are covered
Must still cover:

all clause edges

all edges from complements to clauses

In each clause, don’t mark one literal in the cover,
but mark the other two (total: 2c¢)
covers all triangles, and edges to unmarked variable nodes

O a

» one node per clause
o (k)

» one “diamond” per
O e variable

» 3k + 1 inner nodes

per diamond

Oa (a pair per clause +

one separator)

Hamiltonian Path
Connect clause nodes to gadgets for each member variable

x; in clause forces traversal left to right

Hamiltonian Path

Clause nodes can only be covered from their variable gadgets

A "diamond” can be traversed to the right or to the left, not both
variable is either true or false, only covers corresponding clauses

Can't return from clause node to different diamond,
because then the nodes between clause pairs won't be covered.

Undirected Hamiltonian Path

Reduce directed HAMPATH s ~~ t to UHAMPATH.

Force direction in undirected graph by converting each node u into
connected triple u®, u™d, qout,
Transform s to s°" and ¢ to t™. Call new graph G'.

For each edge u — v, introduce edge u®"* — "

Clearly any directed s ~~ ¢t Hamiltonian path passes through all
triples.

Conversely, any UHAMPATH in G’ must start at s°** and go to
some ui™.

The next node must be u™“, otherwise it will be skipped.

The only connection is then to u°"

We can repeat the argument by induction.

mid

Subset Sum

Subset Sum: Given a collection of integers x; and a target integer
t, is there a subcollection that adds to ¢?

Reduction from 3-SAT. (I variables, k clauses, base 10).
» All numbers have [+ k digits
» Digits 1 to I: For variable z;, create two items ¢;, f;

» Both have ith digit equal to 1
» All other numbers have this digit zero
> ith digit of ¢ = 1 = must select exactly one of t;, f;

> The | + jth digit corresponds to clause c;

> If 2; € cj, set [+ jth digit of t; = 1
> If —x; € ¢j, set | + jth digit of f; =1
> Everything else 0.

» Choose t with first [digits 1 and last k digits 3

> Create two “dummy” integers g;, h; with 1 in position [+ j

Subset Sum Example
Example.

(.’L’l V —zo V .’L’3) A (—\.’L'l Vo V —\.’L'g) A (—\{L'l V —xo V .’L‘3)
A (m V xo V —\;lfg)

int|1 2 3|/4 5 6 7 int|1 2 3[4 5 6 7
tt[1 0 0]1 0 0 1 g1]0 0 0J1 0 0 O
filt 00/0 1 10 h|0O0O0|1 00O
tp |0 1 0[0 1 0 1 2|0 0 0/0 1 0 0
fo/0 1 0[1 0 1 0 ha [0 0 0|0 1 0 O
t3 /0 0 1/1 0 1 0 g3/0 0 0|0 0 1 0
f3/0 0 1{0 1 0 1 Ry |0 0 0|0 0 1 0
t]1 1 1]3 3 3 3 940 0 0)0 0 0 1

hy |O 0 0|0 0 0 1

Subset Sum Reduction

=
Consider a satisfying assignment.

Choose integer t; if z; true, and f; if z; false.
First [columns add up.

In last k& columns, sum is between 1 and 3 (number of literals true
per clause). Select 0 to 2 of the numbers g;, h; to make the sum in
column [+ j equal to 3.

~—
Consider a collection adding up to ¢.
If must contain exactly one of ¢;, f;.

Since each of the last k& columns adds to 3, and at most two
numbers g;, h; were used, each column (clause) must have another
1 (satisfying assignment).

