COMPSCI 501: Formal Language Theory Lecture 23: NP-complete Problems	Review: Polynomial-time Reductions Def. Language A is polynomial-time (mapping) reducible to language B $(A \leq_{P} B)$ if a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ exists, where for all w ,
Lecture 23: NP-complete Problems Marius Minea marius@cs.umass.edu University of Massachusetts Amherst 22 March 2019	$w \in A \Leftrightarrow f(w) \in B$ Use membership testing (solution) for <i>B</i> to decide <i>A efficiently</i> • Reduction (function) goes one-way (construct B-problem from A) • Equivalence proof goes both ways YES maps to YES also need NO mapped to NO Theorem. If $A \leq_P B$ and $B \in P$, then $A \in P$
SAT and 3SAT	$3SAT \leq_{P} CLIQUE$
SAT: Given a propositional formula, is it satisfiable?Useful to write formula in conjunctive normal form: conjunction of clauses $(x_i \lor x_j \lor \ldots \lor \overline{x_k}) \land \ldots \land (\ldots)$ each clause: disjunction of literals (variable or negation)Can we polynomially reduce $SAT \leq_P CNF$ -SAT ? CNF conversion exponential. Polynomial reduction possible.k-SAT: at most (some defs: exactly) k literals per clause in particular: $3SAT$ (exactly 3 literals per clause)How about $2SAT$? $(x_1 \lor x_3) \land (\overline{x_1} \lor x_2) \land \ldots \land (x_4 \lor \overline{x_2})$ 2SAT is polynomial-time	 Construct an instance of <i>CLIQUE</i> from a formula for k clauses, construct (G, k) (k-CLIQUE) Construction: k groups of 3 nodes, one group for each clause. <i>no connection</i> between nodes from one clause can have k-CLIQUE only by choosing one node per clause equivalent to satisfying each clause <i>no connection</i> between any x_i and x̄_i cannot choose x_i and x̄_i at the same time equivalent to maintaining <i>consistency</i> connect all other nodes
NP-completeness	Cook-Levin Theorem: <i>SAT</i> is NP-complete
 Def. A language B is NP-complete iff B is in NP for any A in NP, we have A ≤_P B (2) means B is NP-hard (at least as hard as any problem in NP); B itself need not be in NP In NP (1) + NP-hard (2) means NP-complete. If B is NP-complete and B ≤_P C, then C is NP-complete reduce known NP-complete problem B to target C reduce target problem C from NP-complete problem B If B is NP-complete and B ∈ P, then P = NP All NP-complete problems are polynomially reducible to one another (the hardest problems in NP) 	SAT: the prototypical NP-complete problem Stephen Cook, 1971: proof Richard Karp, 1972: 21 NP-complete problems Leonid Levin (USSR), 1970s: 6 "universal search problems" SAT clearly in NP: guess satisfying assignment, verify in poly-time <i>Proof idea</i> : Reduce any polynomial time NTM decider to a SAT problem. Concretely: let $A \in$ NP and N a NTM that decides A in time n^k .

 $(x_1 \lor x_2 \lor z_1) \land (\overline{z_1} \lor x_3 \lor z_2) \land \ldots \land (\overline{z_{n-3}} \lor x_{n-1} \lor x_n)$