
COMPSCI 501: Formal Language Theory
Lecture 23: NP-complete Problems

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

22 March 2019

Review: Polynomial-time Reductions

Def. Language A is polynomial-time (mapping) reducible to
language B (A ≤P B) if a polynomial-time computable function
f : Σ∗ → Σ∗ exists, where for all w,

w ∈ A⇔ f(w) ∈ B

Use membership testing (solution) for B to decide A efficiently

I Reduction (function) goes one-way
(construct B-problem from A)

I Equivalence proof goes both ways
YES maps to YES
also need NO mapped to NO

7.4 NP-COMPLETENESS 301

FIGURE 7.30

Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B—but now the conversion is done efficiently. To test whether w ∈ A, we use
the reduction f to map w to f(w) and test whether f(w) ∈ B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.31

If A ≤P B and B ∈ P, then A ∈ P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w ∈ A whenever f(w) ∈ B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w ∈ A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

Before demonstrating a polynomial time reduction, we introduce 3SAT , a
special case of the satisfiability problem whereby all formulas are in a special

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Theorem. If A ≤P B and B ∈ P, then A ∈ P

SAT and 3SAT
SAT: Given a propositional formula, is it satisfiable?

Useful to write formula in conjunctive normal form:
conjunction of clauses (xi ∨ xj ∨ . . . ∨ xk) ∧ . . . ∧ (. . .)
each clause: disjunction of literals (variable or negation)

Can we polynomially reduce SAT ≤P CNF-SAT ?
CNF conversion exponential. Polynomial reduction possible.

k-SAT: at most (some defs: exactly) k literals per clause
in particular: 3SAT (exactly 3 literals per clause)

How about 2SAT ?

(x1 ∨ x3) ∧ (x1 ∨ x2) ∧ . . . ∧ (x4 ∨ x2)

2SAT is polynomial-time

3SAT ≤P CLIQUE

Construct an instance of CLIQUE from a formula
for k clauses, construct 〈G, k〉 (k-CLIQUE)

Construction: k groups of 3 nodes, one group for each clause.
I no connection between nodes from one clause

can have k-CLIQUE only by choosing one node per clause
equivalent to satisfying each clause

I no connection between any xi and xi

cannot choose xi and xi at the same time
equivalent to maintaining consistency

I connect all other nodes

NP-completeness

Def. A language B is NP-complete iff
1. B is in NP
2. for any A in NP, we have A ≤P B

(2) means B is NP-hard (at least as hard as any problem in NP);
B itself need not be in NP

In NP (1) + NP-hard (2) means NP-complete.

I If B is NP-complete and B ≤P C, then C is NP-complete
reduce known NP-complete problem B to target C
reduce target problem C from NP-complete problem B

I If B is NP-complete and B ∈ P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Cook-Levin Theorem: SAT is NP-complete

SAT: the prototypical NP-complete problem

Stephen Cook, 1971: proof
Richard Karp, 1972: 21 NP-complete problems
Leonid Levin (USSR), 1970s: 6 “universal search problems”

SAT clearly in NP: guess satisfying assignment, verify in poly-time

Proof idea:
Reduce any polynomial time NTM decider to a SAT problem.

Concretely: let A ∈ NP and N a NTM that decides A in time nk.



A Tableau of Configurations

7.4 NP-COMPLETENESS 305

PROOF IDEA Showing that SAT is in NP is easy, and we do so shortly. The
hard part of the proof is showing that any language in NP is polynomial time
reducible to SAT .

To do so, we construct a polynomial time reduction for each languageA inNP
to SAT . The reduction for A takes a string w and produces a Boolean formula φ
that simulates the NP machine for A on input w. If the machine accepts, φ has
a satisfying assignment that corresponds to the accepting computation. If the
machine doesn’t accept, no assignment satisfies φ. Therefore, w is in A if and
only if φ is satisfiable.

Actually constructing the reduction to work in this way is a conceptually
simple task, though we must cope with many details. A Boolean formula may
contain the Boolean operations AND, OR, and NOT, and these operations form
the basis for the circuitry used in electronic computers. Hence the fact that we
can design a Boolean formula to simulate a Turing machine isn’t surprising. The
details are in the implementation of this idea.

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula φ and accept if the
assignment satisfies φ.

Next, we take any language A in NP and show that A is polynomial time
reducible to SAT . Let N be a nondeterministic Turing machine that decides A
in nk time for some constant k. (For convenience, we actually assume that N
runs in time nk − 3; but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

A tableau for N on w is an nk×nk table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.

FIGURE 7.38

A tableau is an nk × nk table of configurations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Since time nk, tape length at most nk

Encoding Computation History as SAT

Each cell is a variable: xi,j,s = 1 iff cell[i, j] = s
s ∈ Q ∪ Γ ∪ {#} (state or symbol)

Expressing the constraints
I One true variable per cell (unique cell contents) O(n2k)
I Encode starting configuration O(nk)
I Encode valid moves (transition relation)

using 3x2 windows O(n2k) constant size per cell
I Some state in some line is accepting O(n2k)

Claim: If top row is start configuration, and every window is legal,
then every row of the tableau is a configuration that legally follows
the preceding one.

This shows we have indeed achieved a reduction.

3SAT is NP-complete
Proof options

1) Do nondeterministic TM conversion directly to 3SAT
formula “almost” in CNF, except “windows” (constant size)

2) Converting arbitrary formula to 3SAT (Tseitin transform)
new variable for each subformula

x↔ ¬A (¬x ∨ ¬A) ∧ (x ∨A)

x↔ A ∨B (x→ A ∨B) ∧ (A ∨B → x)
= (¬x ∨A ∨B) ∧ (¬A ∨ x) ∧ (¬B ∨ x)

x↔ A ∧B (x→ A ∧B) ∧ (A ∧B → x)
= (¬x ∨A) ∧ (¬x ∨B) ∧ (¬A ∨ ¬B ∨ x)

In both cases, convert clause with n literals to three:

x1 ∨ . . . ∨ xn equisatifiable with
(x1 ∨ x2 ∨ z1) ∧ (z1 ∨ x3 ∨ z2) ∧ . . . ∧ (zn−3 ∨ xn−1 ∨ xn)


