COMPSCI 501: Formal Language Theory

Lecture 23: NP-complete Problems

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

22 March 2019

Review: Polynomial-time Reductions

Def. Language A is polynomial-time (mapping) reducible to
language B (A <p B) if a polynomial-time computable function
f 2% = X" exists, where for all w,

weAs f(w)eB

Use membership testing (solution) for B to decide A efficiently

» Reduction (function) goes one-way
(construct B-problem from A)

» Equivalence proof goes both ways
YES maps to YES s
also need NO mapped to NO . .

Theorem. If A <p B and B € P, then A € P

SAT and 3SAT
SAT: Given a propositional formula, is it satisfiable?

Useful to write formula in conjunctive normal form:
conjunction of clauses (z; Va; V...VTE)A...A(...)
each clause: disjunction of literals (variable or negation)

Can we polynomially reduce SAT <p CNF-SAT ?
CNF conversion exponential. Polynomial reduction possible.

k-SAT: at most (some defs: exactly) k literals per clause
in particular: 3SAT (exactly 3 literals per clause)

How about 2SAT ?

(.”131\/,7,‘3)/\(ﬂ\/IQ)/\.‘./\(fIM\/E)

25SAT is polynomial-time

3SAT <p CLIQUE

Construct an instance of CLIQUE from a formula
for k clauses, construct (G, k) (k-CLIQUE)

Construction: k groups of 3 nodes, one group for each clause.

» no connection between nodes from one clause
can have k-CLIQUE only by choosing one node per clause
equivalent to satisfying each clause

» no connection between any x; and T;
cannot choose z; and T; at the same time
equivalent to maintaining consistency

» connect all other nodes

NP-completeness

Def. A language B is NP-complete iff
1. Bisin NP
2. for any A in NP, we have A <p B

(2) means B is NP-hard (at least as hard as any problem in NP);
B itself need not be in NP
In NP (1) + NP-hard (2) means NP-complete.
» If B is NP-complete and B <p C, then C' is NP-complete

reduce known NP-complete problem B to target C
reduce target problem C' from NP-complete problem B

» If B is NP-complete and B € P, then P = NP

All NP-complete problems are polynomially reducible to one another
(the hardest problems in NP)

Cook-Levin Theorem: SAT is NP-complete

SAT: the prototypical NP-complete problem

Stephen Cook, 1971: proof
Richard Karp, 1972: 21 NP-complete problems
Leonid Levin (USSR), 1970s: 6 “universal search problems”

SAT clearly in NP: guess satisfying assignment, verify in poly-time

Proof idea:
Reduce any polynomial time NTM decider to a SAT problem.

Concretely: let A € NP and N a NTM that decides A in time n*.

A Tableau of Configurations

|qo |w 71;2‘ ce ‘mn‘ u ‘ S ‘ u | # | start configuration
| second configuration
#
window
L
ke /
| nkth configuration

nk

Since time n*, tape length at most n*

Encoding Computation History as SAT

Each cell is a variable: x; ;s = 1 iff celli,j] = s
s € QUT U {#} (state or symbol)

Expressing the constraints

» One true variable per cell (unique cell contents) — O(n?F)
» Encode starting configuration ~ O(n)
» Encode valid moves (transition relation)

using 3x2 windows O(n?*) constant size per cell
» Some state in some line is accepting O(n?*)

Claim: If top row is start configuration, and every window is legal,
then every row of the tableau is a configuration that legally follows
the preceding one.

This shows we have indeed achieved a reduction.

3SAT is NP-complete
Proof options
1) Do nondeterministic TM conversion directly to 3SAT
formula “almost” in CNF, except “windows” (constant size)
2) Converting arbitrary formula to 3SAT (Tseitin transform)
new variable for each subformula
z 4> A (mzV-A)A (zVA)

z+ AV B (x—=AVB)AN(AVB —1x)
=(—zVAVB)A(mAVz)A(-BVzx)

z+ ANB (x—=>AANB)AN(AANB — 1)
=(-zVA)A(-~xVB)A(~AV-BVz)
In both cases, convert clause with n literals to three:

1V ...V x, equisatifiable with
(1 VaaVzi)AN(ZzIV a3V ze) Ao A (Znmg V Tp—1 V Ty)

