Recap: Time Complexity

Time complexity class \(\text{TIME}(t(n)) \) = all languages that are decidable by an \(O(t(n)) \) (deterministic, single-tape) Turing machine.

A \(t(n) \) multitape TM has an equivalent \(O(t^2(n)) \) single-tape TM.

\[
\text{multi-tape polynomial} \implies \text{single-tape polynomial}
\]

Every \(t(n) \) nondeterministic TM has an equivalent \(2^{O(t(n))} \) deterministic single-tape TM.

\[
\text{nondeterministic polynomial} \implies \text{single-tape exponential}
\]

general-case construction, could be better in some cases

Checking vs. Proving vs. Disproving

Hamiltonian Path: directed path containing each node once
Decidable \(\implies \) complement is decidable
 - Finding: hard (NP-complete, will revisit)
 - Checking: easy (traverse path, mark all graph nodes)
 Complexity: polynomial \(O(n^2) \)
 - Disproving: hard (try all paths)
 - Checking witness easier than finding
 - Complement may not have witness

Polynomial Verifiers

Def. A verifier for a language \(A \) is an algorithm \(V \), where
\[
A = \{ w | V \text{ accepts } (w, c) \text{ for some string } c \}
\]
A polynomial-time verifier runs polynomial in the length of \(v \).
A language is polynomially verifiable if it has a polynomial time verifier.

Why no specified constraint on the certificate \(c \)?
If verifier is polynomial, certificate must be polynomial too, otherwise no time to read the entire certificate!

The Class NP

Def. \(\text{NP} \) is the class of languages that have polynomial-time verifiers.

For \(\text{HAMPATH} \), the certificate can be simply the path.

\[
\text{COMPOSITES} = \{ x \mid x = pq, \text{ for integers } p, q, > 1 \}
\]
Certificate \(c \): a divisor of \(x \). \(\implies \text{COMPOSITES} \) is in \(\text{NP} \).

Certificate for \(\text{PRIMES} \): ??? (negation is asymmetric)
We now know \(\text{PRIMES} \) is in \(P \) (Agrawal-Kayal-Saxena 2002) \(\implies \text{COMPOSITES} \) is also in \(P \)

NP = Nondeterministic Polynomial Time

Theorem: A language is in \(\text{NP} \) iff it is decided by some nondeterministic polynomial time Turing machine

\[
\text{polynomial verifier} \iff \text{polynomial-time NTM}
\]

\(\implies \) Assume verifier \(V \) running in time \(n^k \).

NTM \(N \) is:
1. Nondeterministically choose string \(c \) of length \(< n^k \)
 \((n^k \text{ steps, } \Sigma \text{ branches at each}) \)
2. Run \(V \) on input \((w, c)\) (poly-time)
3. Accept/reject based on \(V \)

\(\Leftarrow \) Construct verifier that treats each symbol of \(c \) as a description of the nondeterministic choice to make by \(N \).
1. Simulate \(N \) on \(w \) according to choices \(c \)
2. If this branch of \(N \) accepts, accept, else reject
The Complexity Class \(\text{NTIME} \)

Def. \(\text{NTIME}(t(n)) = \{ L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine } \} \)

\[
\text{NP} = \bigcup_k \text{NTIME}(n^k)
\]

The class \(\text{co-NP} \)

For **CLIQUE** and **SUBSET-SUM**, no obvious way to quickly verify a NO answer. Can’t say that the **complements** of these sets are in NP. (No obvious certificate for complement of these problems)

co-NP: languages whose complements are in NP.

\(\text{co-NP} \neq \text{NP} \text{ ??} \text{ – don’t know} \)

Examples:
- Is a formula valid? counterexample: falsifying assignment
 - this is actually \(\text{SAT} \)
- PRIMES is in \(\text{co-NP} \): counterexample: proper divisor
 - we know it’s also in \(\text{P} \)

Showing that a problem is in \(\text{NP} \)

- **Construct a poly-time verifier** (certificate \(c \) is usually the solution)
- **Have a NTM nondeterministically generate \(c \) and then check it**

CLIQUE

A clique of an undirected graph is a subgraph with all nodes connected.

Does graph \(G \) have a complete subgraph with \(k \) nodes?

Certificate: set of nodes that should form clique.

SUBSET-SUM

Given a collection (multiset) of integers, and a target integer \(t \), is there a subcollection of numbers adding up to \(t \)?

Certificate: the subset which should add up to \(t \)

\(\text{P} \) versus \(\text{NP} \)

Recall: decide vs. verify

\(P = \text{can decide membership in polynomial time} \)

\(\text{NP} = \text{can verify membership in polynomial time (given certificate)} \)

Trivially, \(P \subseteq \text{NP} \). We may have \(P = \text{NP} \) or \(P \subset \text{NP} \)

We’ve seen poly-time \(\text{NTM} \Rightarrow \text{exponential-time DTM} \). Thus

\[
\text{NP} \subseteq \text{EXPTIME} = \bigcup_k \text{TIME}(2^{n^k})
\]

We don’t know if there is a stronger deterministic-time bound.

Polynomial-time Reductions

Def. A function \(f : \Sigma^* \rightarrow \Sigma^* \) is a **polynomial time computable function** if some polynomial time Turing machine exists that when started with any \(w \), halts with just \(f(w) \) on the tape.

Def. Language \(A \) is **polynomial-time (mapping) reducible** to language \(B \) (\(A \lesssim_p B \)) if a polynomial-time computable function \(f : \Sigma^* \rightarrow \Sigma^* \) exists, where for all \(w \),

\[
w \in A \iff f(w) \in B
\]

- Reduction (function) goes one-way (construct B-problem from A)
- Equivalence proof goes both ways
 - YES maps to YES not enough
 - also need NO mapped to NO

![Polynomial-time Reductions Diagram](image-url)