
COMPSCI 501: Formal Language Theory
Lecture 22: The Class NP

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

20 March 2019

Recap: Time Complexity

Time complexity class TIME(t(n)) = all languages that are
decidable by an O(t(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t2(n)) single-tape TM.

multi-tape polynomial ⇒ single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 2O(t(n))

deterministic single-tape TM.

nondeterministic polynomial ⇒ single-tape exponential

general-case construction, could be better in some cases

Checking vs. Proving vs. Disproving

Hamiltonian Path: directed path containing each node once

Decidable ⇒ complement is decidable
I Finding: hard (NP-complete, will revisit)
I Checking: easy (traverse path, mark all graph nodes)

Complexity: polynomial O(n2)
I Disproving: hard (try all paths)

I Checking witness easier than finding
I Complement may not have witness

Polynomial Verifiers

Def. A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}
A polynomial-time verifier runs polynomial in the length of v.

A language is polynomially verifiable if it has a polynomial time
verifier.

Why no specified constraint on the certificate c?

If verifier is polynomial, certificate must be polynomial too,
otherwise no time to read the entire certificate!

The Class NP

Def. NP is the class of languages that have polynomial-time
verifiers.

For HAMPATH, the certificate can be simply the path.

COMPOSITES = {x | x = pq, for integers p, q, > 1}
Certificate c: a divisor of x. ⇒ COMPOSITES is in NP.

Certificate for PRIMES: ??? (negation is asymmetric)

We now know PRIMES is in P (Agrawal-Kayal-Saxena 2002) ⇒
COMPOSITES is also in P

NP = Nondeterministic Polynomial Time
Theorem: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine

polynomial verifier ⇔ polynomial-time NTM

“⇒” Assume verifier V running in time nk.

NTM N is:
1. Nondeterministically choose string c of length < nk

(nk steps, Σ branches at each)
2. Run V on input 〈w, c〉 (poly-time)
3. Accept/reject based on V

“⇐” Construct verifier that treats each symbol of c as a description
of the nondeterministic choice to make by N .

1. Simulate N on w according to choices c
2. If this branch of N accepts, accept, else reject



The Complexity Class NTIME

Def. NTIME(t(n)) = {L | L is a language decided by an O(t(n))
time nondeterministic Turing machine }

NP =
⋃

k

NTIME(nk)

Showing that a problem is in NP
I Construct a poly-time verifier

(certificate c is usually the solution) or
I Have a NTM nondeterministically generate c and then check it

CLIQUE

A clique of an undirected graph is a subgraph with all nodes
connected.

Does graph G have a complete subgraph with k nodes ?

Certificate: set of nodes that should form clique.

SUBSET-SUM

Given a collection (multiset) of integers, and a target integer t, is
there a subcollection of numbers adding up to t ?

Certificate: the subset which should add up to t

The class co-NP

For CLIQUE and SUBSET-SUM, no obvious way to quickly verify a
NO answer

can’t say that the complements of these sets are in NP
(no obvious certificate for complement of these problems)

co-NP: languages whose complements are in NP.

co-NP 6= NP ?? – don’t know

Examples:

Is a formula valid? counterexample: falsifying assignment
this is actually SAT

PRIMES is in co-NP: counterexample: proper divisor
we know it’s also in P

P versus NP

Recall: decide vs. verify

P = can decide membership in polynomial time

NP = can verify membership in polynomial time (given certificate)

Trivially, P ⊆ NP. We may have P = NP or P ⊂ NP

We’ve seen poly-time NTM ⇒ exponential-time DTM. Thus

NP ⊆ EXPTIME =
⋃

k

TIME(2nk)

We don’t know if there is a stronger deterministic-time bound.

Polynomial-time Reductions
Def. A function f : Σ∗ → Σ is a polynomial time computable
function if some polynomial time Turing machine exists that when
started with any w, halts with just f(w) on the tape.

Def. Language A is polynomial-time (mapping) reducible to
language B (A ≤P B) if a polynomial-time computable function
f : Σ∗ → Σ∗ exists, where for all w,

w ∈ A⇔ f(w) ∈ B

I Reduction (function) goes one-way
(construct B-problem from A)

I Equivalence proof goes both ways
YES maps to YES not enough
also need NO mapped to NO

7.4 NP-COMPLETENESS 301

FIGURE 7.30

Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B—but now the conversion is done efficiently. To test whether w ∈ A, we use
the reduction f to map w to f(w) and test whether f(w) ∈ B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.31

If A ≤P B and B ∈ P, then A ∈ P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w ∈ A whenever f(w) ∈ B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w ∈ A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

Before demonstrating a polynomial time reduction, we introduce 3SAT , a
special case of the satisfiability problem whereby all formulas are in a special

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.


