COMPSCI 501: Formal Language Theory
Lecture 22: The Class NP

Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

20 March 2019

Recap: Time Complexity

Time complexity class TIME(¢(n)) = all languages that are
decidable by an O(t(n)) (deterministic, single-tape) Turing machine.

A t(n) multitape TM has an equivalent O(t?(n)) single-tape TM.

multi-tape polynomial = single-tape polynomial

Every t(n) nondeterministic TM has an equivalent 20(:("))
deterministic single-tape TM.

nondeterministic polynomial = single-tape exponential

general-case construction, could be better in some cases

Checking vs. Proving vs. Disproving

Hamiltonian Path: directed path containing each node once
Decidable = complement is decidable
> Finding: hard (NP-complete, will revisit)

> Checking: easy (traverse path, mark all graph nodes)
Complexity: polynomial O(n?)

» Disproving: hard (try all paths)

Polynomial Verifiers

Def. A verifier for a language A is an algorithm V', where
A ={w |V accepts (w, c) for some string c}
A polynomial-time verifier runs polynomial in the length of v.

A language is polynomially verifiable if it has a polynomial time
verifier.

Why no specified constraint on the certificate ¢?

> Checking witness easier than finding If verifier is polynomial, certificate must be polynomial too,
> Complement may not have witness otherwise no time to read the entire certificate!
The Class NP NP = Nondeterministic Polynomial Time

Def. NP is the class of languages that have polynomial-time
verifiers.

For HAMPATH, the certificate can be simply the path.
COMPOSITES = {z | x = pq, for integers p,q,> 1}

Certificate c¢: a divisor of z. = COMPOSITES is in NP.

Certificate for PRIMES: 777 (negation is asymmetric)

We now know PRIMES is in P (Agrawal-Kayal-Saxena 2002) =
COMPOSITES is also in P

Theorem: A language is in NP iff it is decided by some
nondeterministic polynomial time Turing machine

polynomial verifier < polynomial-time NTM

k

“=" Assume verifier V' running in time n

NTM N is:
1. Nondeterministically choose string ¢ of length < n*
(n* steps, ¥ branches at each)
2. Run V on input (w, c) (poly-time)
3. Accept/reject based on V'

"<«" Construct verifier that treats each symbol of ¢ as a description
of the nondeterministic choice to make by V.

1. Simulate N on w according to choices ¢
2. If this branch of N accepts, accept, else reject

The Complexity Class NTIME

Def. NTIME(¢(n)) = {L | L is a language decided by an O(t(n))
time nondeterministic Turing machine }

NP = [JNTIME(nF)
k

Showing that a problem is in NP

» Construct a poly-time verifier
(certificate c¢ is usually the solution) or
» Have a NTM nondeterministically generate ¢ and then check it

CLIQUE

A clique of an undirected graph is a subgraph with all nodes
connected.

Does graph G have a complete subgraph with k& nodes ?

Certificate: set of nodes that should form clique.

SUBSET-SUM

Given a collection (multiset) of integers, and a target integer ¢, is
there a subcollection of numbers adding up to ¢ 7

Certificate: the subset which should add up to ¢

The class co-NP

For CLIQUE and SUBSET-SUM, no obvious way to quickly verify a
NO answer

can't say that the complements of these sets are in NP
(no obvious certificate for complement of these problems)

co-NP: languages whose complements are in NP.

co-NP # NP 7?7 — don’t know

Examples:

Is a formula valid? counterexample: falsifying assignment
this is actually SAT

PRIMES is in co-NP: counterexample: proper divisor
we know it's also in P

P versus NP

Recall: decide vs. verify
P = can decide membership in polynomial time
NP = can verify membership in polynomial time (given certificate)

Trivially, P C NP. We may have P = NP or P C NP
We've seen poly-time NTM = exponential-time DTM. Thus
NP C EXPTIME = UTIME(2"L7)
k

We don't know if there is a stronger deterministic-time bound.

Polynomial-time Reductions

Def. A function f : X* — 3 is a polynomial time computable
function if some polynomial time Turing machine exists that when
started with any w, halts with just f(w) on the tape.

Def. Language A is polynomial-time (mapping) reducible to

language B (A <p B) if a polynomial-time computable function
f X% — ¥ exists, where for all w,

weAsS f(w)eB

» Reduction (function) goes one-way
(construct B-problem from A)

» Equivalence proof goes both ways
YES maps to YES not enough 7
also need NO mapped to NO . .

