COMPSCI 501: Formal Language Theory
Lecture 21: Time Complexity. Polynomial Time
Marius Minea
marius@cs.umass.edu
University of Massachusetts Amherst
18 March 2019

Questions for Today
▶ Refine decidable problems into time classes
▶ Asymptotic complexity: “usual” computers vs. Turing machines
▶ Single vs. Multi-tape vs. Nondeterministic: what matters?
▶ Why polynomial as special case?

Time Complexity
Def. Let M be a deterministic TM that halts on all inputs.
The time complexity (running time) of M is the function $f : \mathbb{N} \to \mathbb{N}$ where $f(n)$ is the maximum number of steps for M to halt on any input of length n.

This corresponds to worst-case analysis.

Big-O
Def. Let $f, g : \mathbb{N} \to \mathbb{R}^+$. We say $f(n) = O(g(n))$ if
\[
\exists c \exists n_0 \forall n \geq n_0 . f(n) \leq cg(n) \quad c, n_0 \in \mathbb{N}^+
\]
$g(n)$ is an asymptotic upper bound for $f(n)$ $f(n)$ grows no faster than $g(n)$

Ignore multiplicative constants and lower-order terms:
$2n^2 - 5n + 4$ is $O(n^2)$
Sometimes used in exponents:
$f(n) = 2^{O(n)}$ means $f(n) = O(2^{cn})$ for some c.

Small-o
Def. Let $f, g : \mathbb{N} \to \mathbb{R}^+$. We say $f(n) = o(g(n))$ if
\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
\]
Equivalent: $\forall c \exists n_0 \forall n \geq n_0 . f(n) < cg(n)$
$f(n)$ grows asymptotically slower than $g(n)$.

Examples:
$\log n = o(n^d)$ for any $d > 0$
$\log \log n = o(\log n)$
$n \log n = o(n \log^2 n)$
$n^d = o(r^n)$ for all $d > 0, r > 1$.

Example: Recognizing $0^k 1^k$
Variant 1:
1. scan tape, reject if 0 right of a 1
2. while both 0s and 1s remain
3. cross off a 0 and a 1
4. if no 0s and 1s remain, accept, else reject

Complexity? $n + 2$ tape scans, $O(n)$ length $\Rightarrow O(n^2)$.

Def. Let $t : \mathbb{N} \to \mathbb{R}^+$ be a function. The time complexity class $\text{TIME}(t(n))$ is the collection of all languages that are decidable by an $O(t(n))$ Turing machine.

Recognizing $0^k 1^k$ is in $\text{TIME}(n^2)$. Surprising? Can we do better?
Faster: Recognizing 0^k1^k

Variant 2 (base-2 counting):
1. scan tape, reject if 0 right of a 1
2. while both 0s and 1s remain
3. if total number is odd, reject
4. cross out every other 0 and every other 1
5. if no 0s and 1s remain, accept, else reject

$2 + \lceil \log n \rceil$ iterations, $O(n)$ each $\Rightarrow O(n \log n)$. Equivalent: convert 0/1 count to base 2 in $O(n \log n)$, compare

The Class P
We’ve already disregarded constant factors.

Multitape \Rightarrow single tape conversion a good argument to disregard polynomial differences

All (reasonable) deterministic computational models are polynomially equivalent.

Def. P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine

$$P = \bigcup_k \text{TIME}(n^k)$$

We’ll assume reasonable encodings of input.

We’ll not consider unary encodings, since they are exponentially larger than encodings in any other base.

Recognizing 0^k1^k: linear-time with two tapes

Variant 3: two tapes
1. scan tape, reject if 0 right of a 1
2. scan until first 1, copy zeroes to tape 2
3. scan ones on tape 1. For each 1, cross out one 0 on tape 2
4. if too many 0s or 1s, reject, else accept

Decidability vs. time complexity

All computation models decide same class of languages (Church-Turing thesis)

But choice of model affects time complexity
e.g., what can we do in linear time?

Theorem (won’t prove): If a language is recognized in $o(n \log n)$ by a one-tape TM, it must be regular!

Single-tape vs. multi-tape

Theorem: Let t be function with $t(n) \geq n$. Then every $t(n)$ multitape TM M has an equivalent $O(t^2(n))$ single-tape TM S.

Proof. Recall simulation of multi-tape TM with single-tape TM: store tapes consecutively, with markers on heads repeat
- scan all heads to determine next move
- update contents and head positions
 (possibly shift tape portion right to extend)

Need to bound length of scan:
- M does $t(n)$ steps \Rightarrow each tape has length $\leq t(n)$
- S has tape length $\leq kt(n) = O(t(n))$ (k constant)
- Each move of S does $\leq k$ tape shifts $\Rightarrow O(t(n))$.
- Simulation time: $O(n)$ steps to arrange tape, $t(n)$ steps of $O(t(n))$.
- Since $t(n) \geq n$, we get $O(t^2(n))$.

The Theorem
We’ve already disregarded constant factors.

Multitape \Rightarrow single tape conversion a good argument to disregard polynomial differences

All (reasonable) deterministic computational models are polynomially equivalent.

Def. P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine

$$P = \bigcup_k \text{TIME}(n^k)$$

We’ll assume reasonable encodings of input.

We’ll not consider unary encodings, since they are exponentially larger than encodings in any other base.

Examples: Euclidean Algorithm

$$\gcd(x, y)$$
1. while $y \neq 0$
2. $x = x \mod y$
3. exchange x and y
4. output x

How many iterations?
- if $y \leq x/2$, then $x \mod y < y \leq x/2$
- if $y > x/2$, then $y = x \mod y = x - y < x/2$
 \Rightarrow every other iteration cuts x by at least half.

$O(\log x)$ iterations; taking modulo is polynomial \Rightarrow polynomial can prove $O(\log^2 x)$

Nondeterministic Turing Machines

Def. Let N be a nondeterministic TM that is a decider.

The running time of N is a function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Theorem: Let t be function with $t(n) \geq n$.
Then every $t(n)$ nondeterministic TM N has an equivalent $2^{O(t(n))}$ deterministic single-tape TM D.

Proof. Recall construction that simulates N with D.
Let b be the max. branching factor in the computation tree of N.
\Rightarrow tree has at most $b^{t(n)}$ leaves, $O(b^{t(n)})$ nodes.

Each node reached in $\leq t(n)$ steps, so running time is $O(t(n)b^{t(n)}) = 2^{O(t(n))}$.

D has 3 tapes, a single-tape TM (at most) squares complexity:

$(2^{O(t(n))})^2 = 2^{2O(t(n))} = 2^{O(t(n))}$.
Examples: CFL are in P

Theorem: Every context-free language is a member of P.

Recall decidability proof:
- construct Chomsky Normal Form
- take all derivations with $2n - 1$ steps.

Not good enough (number of derivations exponential).

Solution: *dynamic programming.*

$\text{table}(i, j)$ stores set of variables that can generate $w_i w_{i+1} \ldots w_j$

$S \rightarrow \varepsilon$: special case
- initialize $\text{table}(i, i)$ with variables $A \rightarrow w_j$
- for increasing difference $j - i$
 - for k from i to $j - 1$
 - for all rules $A \rightarrow BC$
 - if $B \in \text{table}(i, k)$ and $C \in \text{table}(k + 1, j)$
 - add A to $\text{table}(i, j)$