	Questions for Today
COMPSCI 501: Formal Language Theory Lecture 21: Time Complexity. Polynomial Time Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	 Refine decidable problems into time classes Asymptotic complexity: "usual" computers vs. Turing machines Single vs. Multi-tape vs. Nondeterministic: what matters? Why polynomial as special case ?
Time Complexity	Big-O
Def. Let M be a deterministic TM that halts on all inputs. The time complexity (<i>running time</i>) of M is the function $f : \mathbb{N} \to \mathbb{N}$ where $f(n)$ is the maximum number of steps for M to halt on any input of length n . This corresponds to <i>worst-case</i> analysis.	Def. Let $f, g: \mathbb{N} \to \mathbb{R}^+$. We say $f(n) = O(g(n))$ if $\exists c \exists n_0 \forall n \ge n_0 . f(n) \le cg(n) c, n_0 \in \mathbb{N}^+$ g(n) is an asymptotic upper bound for $f(n)f(n)$ grows no faster than $g(n)Ignore multiplicative constants and lower-order terms:2n^2 - 5n + 4 is O(n^2)Sometimes used in exponents:f(n) = 2^{O(n)} means f(n) = O(2^{cn}) for some c.$
Small-o	Example: Recognizing $0^k 1^k$
Def. Let $f, g: \mathbb{N} \to \mathbb{R}^+$. We say $f(n) = o(g(n))$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ Equivalent: $\forall c \exists n_0 \forall n \ge n_0 . f(n) < cg(n)$ f(n) grows asymptotically slower than $g(n)$. Examples: $\log n = o(n^d)$ for any $d > 0$ $\log \log n = o(\log n)$ $n \log n = o(n \log^2 n)$ $n^d = o(r^n)$ for all $d > 0, r > 1$.	Variant 1: 1. scan tape, reject if 0 right of a 1 2. while both 0s and 1s remain 3. cross off a 0 and a 1 4. if no 0s and 1s remain, <i>accept</i> , else <i>reject</i> Complexity? $n + 2$ tape scans, $O(n)$ length $\Rightarrow O(n^2)$. Def. Let $t : \mathbb{N} \to \mathbb{R}+$ be a function. The time complexity class TIME $(t(n))$ is the collection of all languages that are decidable by an $O(t(n))$ Turing machine. Recognizing $0^k 1^k$ is in TIME (n^2) . Surprising? Can we do better?

Faster: Recognizing $0^k 1^k$	Recognizing $0^k 1^k$: linear-time with two tapes
Variant 2 (base-2 counting): 1. scan tape, reject if 0 right of a 1 2. while both 0s and 1s remain 3. if total number is odd, <i>reject</i> 4. cross out every other 0 and every other 1 5. if no 0s and 1s remain, <i>accept</i> , else <i>reject</i> 2 + $\lceil \log n \rceil$ iterations, $O(n)$ each $\Rightarrow O(n \log n)$. Equivalent: convert 0/1 count to base 2 in $O(n \log n)$, compare	 Variant 3: two tapes scan tape, reject if 0 right of a 1 scan until first 1, copy zeroes to tape 2 scan ones on tape 1. For each 1, cross out one 0 on tape 2 if too many 0s or 1s, <i>reject</i>, else <i>accept</i> Decidability vs. time complexity All computation models decide same class of languages (Church-Turing thesis) But choice of model affects time complexity e.g., what can we do in linear time?
	a one-tape TM, it must be regular!
Single-tape vs. multi-tape Theorem: Let t be function with $t(n) \ge n$. Then every $t(n)$ multitape TM M has an equivalent $O(t^2(n))$ single-tape TM S. Proof: Recall simulation of multi-tape TM with single-tape TM: store tapes consecutively, with markers on heads repeat scan all heads to determine next move update contents and head positions (possibly shift tape portion right to extend) Need to bound length of scan: M does $t(n)$ steps \Rightarrow each tape has length $\le t(n)$ $\Rightarrow S$ has tape length $\le kt(n) = O(t(n))$ (k constant) Each move of S does $\le k$ tape shifts $\Rightarrow O(t(n))$. Simulation time: $O(n)$ steps to arrange tape, $t(n)$ steps of $O(t(n))$.	Nondeterministic Turing MachinesDef. Let N be a nondeterministic TM that is a decider.The running time of N is a function $f : \mathbb{N} \to \mathbb{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.Theorem: Let t be function with $t(n) \ge n$. Then every $t(n)$ nondeterministic TM N has an equivalent $2^{O(t(n))}$ deterministic single-tape TM D.Proof. Recall construction that simulates N with D. Let b be the max. branching factor in the computation tree of N \Rightarrow tree has at most $b^{t(n)}$ leaves, $O(b^{t(n)})$ nodes.Each node reached in $\le t(n)$ steps, so running time is $O(t(n)b^{t(n)}) = 2^{O(t(n))}$.D has 3 tapes, a single-tape TM (at most) squares complexity:
Since $t(n) \ge n$, we get $O(t^2(n))$.	$(2^{O(t(n))})^2 = 2^{2O(t(n))} = 2^{O(t(n))}.$
 The Class P We've already disregarded constant factors. Multitape → single tape conversion a good argument to disregard <i>polynomial</i> differences All (reasonable) <i>deterministic</i> computational models are polynomially equivalent. 	Examples: Euclidean Algorithm gcd(x, y) 1. while $y \neq 0$ 2. $x = x \mod y$ 3. exchange x and y 4. output x
Def. P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine $P = \bigcup_k TIME(n^k)$ We'll assume reasonable encodings of input. We'll not consider unary encodings, since they are exponentially larger than encodings in any other base.	How many iterations? if $y \le x/2$, then $x \mod y < y \le x/2$ if $y > x/2$, then $x \mod y = x - y < x/2$ \Rightarrow every other iteration cuts x by at least half. $O(\log x)$ iterations; taking modulo is polynomial \Rightarrow polynomial can prove $O(\log^2 x)$

Examples: CFL are in P

Theorem: Every context-free language is a member of P.

Recall decidability proof: construct Chomsky Normal Form take all derivations with 2n-1 steps.

Not good enough (number of derivations exponential).

Solution: dynamic programming.

table(i, j) stores set of variables that can generate $w_i w_{i+1} \dots w_j$

$$\begin{split} S \to \varepsilon: \text{ special case} \\ \text{initialize } table(i,i) \text{ with variables } A \to w_i \\ \text{for increasing difference } j-i \\ \text{for } k \text{ from } i \text{ to } j-1 \\ \text{for all rules } A \to BC \\ \text{ if } B \in table(i,k) \text{ and } C \in table(k+1,j) \\ \text{ add } A \text{ to } table(i,j) \end{split}$$