
COMPSCI 501: Formal Language Theory
Lecture 21: Time Complexity. Polynomial Time

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

18 March 2019

Questions for Today

I Refine decidable problems into time classes
I Asymptotic complexity: “usual” computers vs. Turing machines
I Single vs. Multi-tape vs. Nondeterministic: what matters?
I Why polynomial as special case ?

Time Complexity

Def. Let M be a deterministic TM that halts on all inputs.
The time complexity (running time) of M is the function
f : N→ N where f(n) is the maximum number of steps for M to
halt on any input of length n.

This corresponds to worst-case analysis.

Big-O

Def. Let f, g : N→ R+. We say f(n) = O(g(n)) if
∃c∃n0 ∀n ≥ n0 . f(n) ≤ cg(n) c, n0 ∈ N+

g(n) is an asymptotic upper bound for f(n)
f(n) grows no faster than g(n)

Ignore multiplicative constants and lower-order terms:

2n2 − 5n + 4 is O(n2)

Sometimes used in exponents:
f(n) = 2O(n) means f(n) = O(2cn) for some c.

Small-o

Def. Let f, g : N→ R+. We say f(n) = o(g(n)) if

lim
n→∞

f(n)
g(n) = 0

Equivalent: ∀c ∃n0 ∀n ≥ n0 . f(n) < cg(n)

f(n) grows asymptotically slower than g(n).

Examples:

log n = o(nd) for any d > 0

log log n = o(log n)

n log n = o(n log2 n)

nd = o(rn) for all d > 0, r > 1.

Example: Recognizing 0k1k

Variant 1:
1. scan tape, reject if 0 right of a 1
2. while both 0s and 1s remain
3. cross off a 0 and a 1
4. if no 0s and 1s remain, accept, else reject

Complexity? n + 2 tape scans, O(n) length ⇒ O(n2).

Def. Let t : N→ R+ be a function. The time complexity class
TIME(t(n)) is the collection of all languages that are decidable by
an O(t(n)) Turing machine.

Recognizing 0k1k is in TIME(n2). Surprising? Can we do better?



Faster: Recognizing 0k1k

Variant 2 (base-2 counting):
1. scan tape, reject if 0 right of a 1
2. while both 0s and 1s remain
3. if total number is odd, reject
4. cross out every other 0 and every other 1
5. if no 0s and 1s remain, accept, else reject

2 + dlog ne iterations, O(n) each ⇒ O(n log n).

Equivalent: convert 0/1 count to base 2 in O(n log n), compare

Recognizing 0k1k: linear-time with two tapes

Variant 3: two tapes
1. scan tape, reject if 0 right of a 1
2. scan until first 1, copy zeroes to tape 2
3. scan ones on tape 1. For each 1, cross out one 0 on tape 2
4. if too many 0s or 1s, reject, else accept

Decidability vs. time complexity

All computation models decide same class of languages
(Church-Turing thesis)

But choice of model affects time complexity
e.g., what can we do in linear time?

Theorem (won’t prove): If a language is recognized in o(n log n) by
a one-tape TM, it must be regular!

Single-tape vs. multi-tape
Theorem: Let t be function with t(n) ≥ n. Then every t(n)
multitape TM M has an equivalent O(t2(n)) single-tape TM S.

Proof: Recall simulation of multi-tape TM with single-tape TM:
store tapes consecutively, with markers on heads
repeat
scan all heads to determine next move
update contents and head positions
(possibly shift tape portion right to extend)

Need to bound length of scan:
M does t(n) steps ⇒ each tape has length ≤ t(n)
⇒ S has tape length ≤ kt(n) = O(t(n)) (k constant)

Each move of S does ≤ k tape shifts ⇒ O(t(n)).

Simulation time: O(n) steps to arrange tape, t(n) steps of O(t(n)).
Since t(n) ≥ n, we get O(t2(n)).

Nondeterministic Turing Machines
Def.. Let N be a nondeterministic TM that is a decider.
The running time of N is a function f : N→ N, where f(n) is the
maximum number of steps that N uses on any branch of its
computation on any input of length n.

Theorem: Let t be function with t(n) ≥ n.
Then every t(n) nondeterministic TM N has an equivalent 2O(t(n))

deterministic single-tape TM D.

Proof. Recall construction that simulates N with D.
Let b be the max. branching factor in the computation tree of N
⇒ tree has at most bt(n) leaves, O(bt(n)) nodes.

Each node reached in ≤ t(n) steps, so running time is
O(t(n)bt(n)) = 2O(t(n)).

D has 3 tapes, a single-tape TM (at most) squares complexity:

(2O(t(n))2 = 22O(t(n) = 2O(t(n)).

The Class P
We’ve already disregarded constant factors.

Multitape → single tape conversion a good argument to disregard
polynomial differences

All (reasonable) deterministic computational models are
polynomially equivalent.

Def. P is the class of languages that are decidable in polynomial
time on a deterministic single-tape Turing machine

P =
⋃

k

TIME(nk)

We’ll assume reasonable encodings of input.

We’ll not consider unary encodings, since they are exponentially
larger than encodings in any other base.

Examples: Euclidean Algorithm

gcd(x, y)
1. while y 6= 0
2. x = x mod y
3. exchange x and y
4. output x

How many iterations?

if y ≤ x/2, then x mod y < y ≤ x/2
if y > x/2, then x mod y = x− y < x/2
⇒ every other iteration cuts x by at least half.

O(log x) iterations; taking modulo is polynomial ⇒ polynomial
can prove O(log2 x)



Examples: CFL are in P
Theorem: Every context-free language is a member of P.

Recall decidability proof:
construct Chomsky Normal Form
take all derivations with 2n− 1 steps.

Not good enough (number of derivations exponential).

Solution: dynamic programming.

table(i, j) stores set of variables that can generate wiwi+1 . . . wj

S → ε: special case
initialize table(i, i) with variables A→ wi

for increasing difference j − i
for k from i to j − 1

for all rules A→ BC
if B ∈ table(i, k) and C ∈ table(k + 1, j)
add A to table(i, j)


