	Questions for Today
COMPSCI 501: Formal Language Theory Lecture 20: Descriptive Complexity Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	 What is information? Is there an optimal encoding? Are there incompressible strings ? Can we compute the complexity of a string?
8 March 2019	
Defining Information Quantity	Representations using Turing Machines Option 1: no input
011011011011011011011 011010011001010	 Construct Turing Machine that that prints string when starting with <i>blank tape</i> Encode Turing machine itself
String 1 is clearly a repetition, 7 times 011 String 2, less apparent	TM will contain some "table" for the string Not very efficient
 Looking for precise, unambiguous description to recreate object Short, or shortest one if possible 	 Option 2: some input Describe string x with TM M and input w Intuition: w describes part that's inefficient to encode
 Representation rules Consider only objects that are bitstrings Consider only descriptions that are bitstrings 	Represent as $\langle M \rangle w$ (will write $\langle M, w \rangle$) How to separate a concatenation ? Double bits in representation of $\langle M \rangle$: 001100001100 for 010010 end with 01 (not doubled, can detect)
Defining Information Quantity	Complexity and String Operations
Def. The minimal description of a binary string x is the shortest string $\langle M, w \rangle$ where M halts on input w with x on tape. if several, choose lexicographically first	Doubling a string should not add much to its complexity: $\forall x \exists c . K(xx) \leq K(x) + c$
The descriptive complexity (Kolmogorov complexity) is the length of the minimal description: $K(x) = d(x) $	Let $d(x) = \langle M_1, w \rangle$. Construct M_2 that: reads $\langle M_1, w \rangle$, runs M_1 on w , doubles string left on tape. Then $d(xx) = \langle M_2 \rangle d(x)$. Constant is $ \langle M_2 \rangle $.
Theorem $\exists c \forall x . K(x) \leq x + c$	
The descriptive complexity of a string is at most a constant more than its length constant does not depend on string	Complexity of concatenation? Sum of complexities? Not true Need to distinguish break point. Simple idea: double-encode first string, separate (01)
Proof idea: have the input w be the string x itself M_{id} does nothing: halt, leave input on tape (identity function) constant c is $ \langle M_{id} \rangle $	$\exists c \forall x, y . K(xy) \leq 2K(x) + K(y) + c$

Optimality of Definition
Could a different definition achieve smaller complexity? Not in an algorithic way. A specific description method: description language $p: \Sigma^* \to \Sigma^*$ p: computable function Minimal description $d_p(x)$: first string s with $p(s) = x$ (Think: p = programming language, s = shortest program) Theorem: For any description language p there exists a constant c (depending only on p), so $\forall x K(x) \leq K_p(x) + c$ (Choice of language varies complexity only by constant amount) <i>Proof</i> : p computable \Rightarrow Turing machine M_p Encoding is $\langle M_p \rangle d_p(x)$ (prepend interpreter for p)
Incompressibility and Randomness
Corollary: At least $2^n - 2^{n-c+1} + 1$ strings of length n are incompressible by c Or: probability of picking a n -bit string with complexity $\ge n - c$ is more than $1 - \frac{1}{2^c}$ Incompressible strings have usual properties of random strings: about equal numbers of ones and zeroes longest run of 0s has length approx. $\log n$, etc.
Incompressible Strings are UndecidableLet $U = \{x \mid K(x) \geq x \}$ be the set of incompressible strings.Assume we have a TM that decides U .We know U has at least one string of each length n .We use it to construct a TM M that on input n outputs the first n -bit string s_n from U .By definition, $K(s_n) \geq n$. But s_n can be represented by $\langle M, n \rangle$, where $ \langle M \rangle = c$ is constant, and n takes $\log n$ bits, so $K(s_n) \leq c + \log n$.But $n \leq c + \log n$ is true only for finitely many n , contradiction.

Nearly Incompressible Strings

Theorem: For some constant b, for every string x, the minimal description d(x) is incompressible by b.

Consider a TM ${\it M}$ which double-decodes an input:

On input $\langle R, u \rangle$, where R is a TM: Run R on y and reject if output not of the form $\langle S, z \rangle$ Run S on z and halt with result on tape.

Claim: $b = |\langle M \rangle| + 1$ satisfies the theorem.

Assume we had a *b*-compressible description d(x), thus $|d(d(x))| \leq |d(x)| - b$. But then $\langle M \rangle d \ d(x)$ is a description of x, with length $\leq (b-1) + |d(x) - b| = |d(x)| - 1$, which contradicts the definition of d as minimal.

Applications: Infinitely Many Primes

Suppose not: just k primes $p_1, p_2, \ldots p_k$

Any number described by exponents: e_1, e_2, \ldots, e_k .

Let m be incompressible n-bit number, so $K(m) \ge n$.

Exponents give a short description: each $e_i \leq \log m$.

$$\begin{split} & \text{So } |d(e_i)| \leq \log \log m \text{ and} \\ & |d((e_1,\ldots,e_k))| \leq 2k \log \log m \leq 2k \log(n+1) \text{, so} \\ & \text{K}(m) \leq 2k \log(n+1) + c. \end{split}$$

For large enough n, this cannot be $\geq n$, contradiction.

Enumerating Incompressible Strings

Theorem: Any enumerable subset of incompressible strings is finite.

Proof. Take $A = \{x \mid \mathsf{K}(x) \ge |x|\}.$

Assume it had an infinite enumerable subset $B \subseteq A$.

Define h(n) = first enumerated string with length $\geq n$.

Then h is computable, and by definition of A, $\mathsf{K}(h(n))\geq |h(n)|\geq n.$

But at the same time, h(n) is described by n, so $\mathsf{K}(h(n)) \leq \mathsf{K}(n) + c \leq \log n + c$, contradiction, since $n > \log n + c$ for large n.