
COMPSCI 501: Formal Language Theory
Lecture 20: Descriptive Complexity

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

8 March 2019

Questions for Today

I What is information?
I Is there an optimal encoding?
I Are there incompressible strings ?
I Can we compute the complexity of a string?

Defining Information Quantity

011011011011011011011

011010011001011010010

String 1 is clearly a repetition, 7 times 011

String 2, less apparent
I Looking for precise, unambiguous description to recreate object
I Short, or shortest one if possible

I Representation rules
I Consider only objects that are bitstrings
I Consider only descriptions that are bitstrings

Representations using Turing Machines
I Option 1: no input

1. Construct Turing Machine that that prints string
when starting with blank tape

2. Encode Turing machine itself

TM will contain some “table” for the string
Not very efficient
I Option 2: some input

Describe string x with TM M and input w
Intuition: w describes part that’s inefficient to encode

Represent as 〈M〉w (will write 〈M, w〉)

How to separate a concatenation ?

Double bits in representation of 〈M〉: 001100001100 for 010010
end with 01 (not doubled, can detect)

Defining Information Quantity

Def: The minimal description of a binary string x is the shortest
string 〈M, w〉 where M halts on input w with x on tape.
if several, choose lexicographically first

The descriptive complexity (Kolmogorov complexity) is the length
of the mininmal description: K(x) = |d(x)|

Theorem ∃c∀x . K(x) ≤ |x|+ c

The descriptive complexity of a string is at most a constant more
than its length

constant does not depend on string

Proof idea: have the input w be the string x itself
Mid does nothing: halt, leave input on tape (identity function)
constant c is |〈Mid〉|

Complexity and String Operations

Doubling a string should not add much to its complexity:

∀x∃c . K(xx) ≤ K(x) + c

Let d(x) = 〈M1, w〉. Construct M2 that:
reads 〈M1, w〉, runs M1 on w, doubles string left on tape.
Then d(xx) = 〈M2〉d(x). Constant is |〈M2〉|.

Complexity of concatenation? Sum of complexities? Not true

Need to distinguish break point.

Simple idea: double-encode first string, separate (01)

∃c∀x, y . K(xy) ≤ 2K(x) + K(y) + c

Concatenation: Can we do better?

Could encode length |d(x)| as binary integer and prepend.
length is doubled to be distinguishable.

2 log K(x) + K(x) + K(y) + c

Even better? Do the same length-encoding with the length:

2 log log K(x) + log K(x) + K(x) + K(y) + c, etc.

Cannot do K(x) + K(y) + c

Optimality of Definition

Could a different definition achieve smaller complexity?
Not in an algorithic way.

A specific description method: description language p : Σ∗ → Σ∗

p: computable function

Minimal description dp(x): first string s with p(s) = x
(Think: p = programming language, s = shortest program)

Theorem: For any description language p there exists a constant c
(depending only on p), so ∀xK(x) ≤ Kp(x) + c

(Choice of language varies complexity only by constant amount)

Proof: p computable ⇒ Turing machine Mp

Encoding is 〈Mp〉dp(x) (prepend interpreter for p)

Incompressible Strings

Def.: A string x is c-compressible if K(x) ≤ |x| − c.

Not c-commpressible: incompressible by c

incompressible = incompressible by 1.

Incompressible strings exist

Amazingly simple:

Number of strings shorter than n is 20 + 21 + . . . 2n−1 < 2n

⇒ at least one n-bit string is incompressible!

Which? Can we tell? Not really.

Incompressibility and Randomness

Corollary: At least 2n − 2n−c+1 + 1 strings of length n are
incompressible by c

Or: probability of picking a n-bit string with complexity ≥ n− c is
more than 1− 1

2c

Incompressible strings have usual properties of random strings:
about equal numbers of ones and zeroes
longest run of 0s has length approx. log n, etc.

Most Strings are Close to Incompressible
Theorem:
Let f be a computable property that holds for almost all strings.
Then for any b > 0, the property is false only for finitely many
strings incompressible by b.

holds for almost almost all strings = fraction of strings of length n
for which f is false goes to 0 as n→∞.

Proof: Enumerate strings on which s fails, in string order:
On input i, find and output ith string x where f(x) is false.

This gives a short description: 〈M, ix〉. Let c = |〈M〉|.
Now consider b > 0 and length n so at most 1

2b+c+1 strings fail f .

Since we have < 2n+1 strings of length ≤ n, all indices are
< 2n+1/2b+c+1 = 2n−b−c.
Their length is ≤ n− b− c, so with 〈M〉, still ≤ n− b.

So K(x) ≤ n− b: every sufficiently long string that fails f is
compressible by b, so only finitely many are incompressible by b

Incompressible Strings are Undecidable

Let U = {x | K(x) ≥ |x|} be the set of incompressible strings.

Assume we have a TM that decides U .
We know U has at least one string of each length n.

We use it to construct a TM M that on input n outputs the first
n-bit string sn from U .

By definition, K(sn) ≥ n. But sn can be represented by 〈M, n〉,
where |〈M〉| = c is constant, and n takes log n bits, so
K(sn) ≤ c + log n.

But n ≤ c + log n is true only for finitely many n, contradiction.

Nearly Incompressible Strings

Theorem: For some constant b, for every string x, the minimal
description d(x) is incompressible by b.

Consider a TM M which double-decodes an input:

On input 〈R, u〉, where R is a TM:
Run R on y and reject if output not of the form 〈S, z〉
Run S on z and halt with result on tape.

Claim: b = |〈M〉|+ 1 satisfies the theorem.

Assume we had a b-compressible description d(x), thus
|d(d(x))| ≤ |d(x)| − b. But then 〈M〉d d(x) is a description of x,
with length ≤ (b− 1) + |d(x)− b| = |d(x)| − 1, which contradicts
the definition of d as minimal.

Applications: Infinitely Many Primes

Suppose not: just k primes p1, p2, . . . pk

Any number described by exponents: e1, e2, . . . , ek.

Let m be incompressible n-bit number, so K(m) ≥ n.

Exponents give a short description: each ei ≤ log m.

So |d(ei)| ≤ log log m and
|d((e1, . . . , ek))| ≤ 2k log log m ≤ 2k log(n + 1), so
K(m) ≤ 2k log(n + 1) + c.

For large enough n, this cannot be ≥ n, contradiction.

Enumerating Incompressible Strings

Theorem: Any enumerable subset of incompressible strings is finite.

Proof: Take A = {x | K(x) ≥ |x|}.
Assume it had an infinite enumerable subset B ⊆ A.

Define h(n) = first enumerated string with length ≥ n.

Then h is computable, and by definition of A,
K(h(n)) ≥ |h(n)| ≥ n.

But at the same time, h(n) is described by n, so
K(h(n)) ≤ K(n) + c ≤ log n + c, contradiction,
since n > log n + c for large n.

