

Formal Definition

- A (deterministic) finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:
- Q is a finite set of states
- \triangleright Σ is a finite *alphabet* (of input *symbols*)
- $\delta: Q \times \Sigma \to Q$ is the transition function
- ▶ $q_0 \in Q$ is the *start state*
- F ⊆ Q is the set of accept states.

Language of a DFA

Informally: M accepts string \boldsymbol{w} if on input \boldsymbol{w} it ends up in an accepting state.

More precisely: let $w = w_1 w_2 \dots w_n$. Then M accepts w if there is a sequence of states $r_0, r_1, \ldots r_n$ from Q such that

- ▶ $r_0 = q_0$ (initial state)
- $\delta(r_i, w_{i+1}) = r_{i+1}$ (transitions on symbols from string)
- ▶ $r_n \in F$ (accept state)
- L(M) (language of M) = set of strings accepted by M

Def. A language is called a regular language if some finite automaton recognizes it.

Some Simple Patterns

Strings that

- start with a given string if not, go to "dead state" (will never accept)
- end with a given string in general, must "remember" last k symbols (pattern length)
- contain a given string (pattern search) Knuth-Morris-Pratt algorithm constructs DFA for pattern

contains/ends with pattern: easy via NFA - DFA construction

Automata for a finite set of strings: $\{ "they", "are", "more" \} \\ \{ "this", "is", "his" \}$

(Finite State) Transducers

Outputs a string (one output symbol for each input) a.k.a. Mealy machines

Change in formal definition:

- output alphabet Γ
- transition function: $\delta: Q \times \Sigma \to Q \times \Gamma$

Figure: D. Eppstein

Finite State Machines for Testing

Some Fundamental Testing problems:

- Determine the state after a test (homing/distinguishing sequence)
- \blacktriangleright Verify that M is in a given state s (state verification)
- \blacktriangleright Conformance testing: Given M (black-box) and a FSM S (specification), determine whether M is equivalent to S
- Machine identification: identify unknown black-box machine M

