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Automata: the simplest computers

Switch: just one bit of memory
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What happens if we press “stop” in “off” state?
Should describe behavior completely

Strings and Languages
Alphabet (usually Σ): any nonempty finite set

String: finite sequence of symbols from the alphabet

Σ∗: set of all (finite) strings over Σ, incl. empty string (denoted ε).

A language is an arbitrary subset of strings (of Σ∗)
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Decision problem for a language X: for a given input string
w ∈ Σ∗, answer whether w ∈ X

Parity: Even or Odd ?

We’ll use automata to recognize languages.
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Bit strings (0 or 1) with an odd number of ones.

q0: initial state; q1: accepting state



Formal Definition

A (deterministic) finite automaton is a 5-tuple (Q,Σ, δ, q0, F ):
I Q is a finite set of states

I Σ is a finite alphabet (of input symbols)

I δ : Q× Σ→ Q is the transition function

I q0 ∈ Q is the start state

I F ⊆ Q is the set of accept states.

Language of a DFA
Informally: M accepts string w if on input w it ends up in an
accepting state.

More precisely: let w = w1w2 . . . wn. Then M accepts w if there is
a sequence of states r0, r1, . . . rn from Q such that
I r0 = q0 (initial state)

I δ(ri, wi+1) = ri+1 (transitions on symbols from string)

I rn ∈ F (accept state)

L(M) (language of M) = set of strings accepted by M

Def. A language is called a regular language if some finite
automaton recognizes it.

Some Simple Patterns

Strings that
I start with a given string

if not, go to “dead state” (will never accept)
I end with a given string

in general, must “remember” last k symbols (pattern length)
I contain a given string (pattern search)

Knuth-Morris-Pratt algorithm constructs DFA for pattern

contains/ends with pattern: easy via NFA - DFA construction

Automata for a finite set of strings:
{“they”, “are”, “more” }
{“this”, “is”, “his” }

Recognizing Comments in C / C++
Two types of comments:

/* anything */
// anything newline

Which states should be accepting?
Source file should not end inside comment

Figure: D. Eppstein

(Finite State) Transducers
Outputs a string (one output symbol for each input)
a.k.a. Mealy machines

EXERCISES 87

1.22 In certain programming languages, comments appear between delimiters such as
/# and #/. Let C be the language of all valid delimited comment strings. A mem-
ber of C must begin with /# and end with #/ but have no intervening #/. For
simplicity, assume that the alphabet for C is Σ = {a, b, /, #}.

a. Give a DFA that recognizes C.

b. Give a regular expression that generates C.
A1.23 Let B be any language over the alphabet Σ. Prove that B = B+ iff BB ⊆ B.

1.24 A finite state transducer (FST) is a type of deterministic finite automaton whose
output is a string and not just accept or reject . The following are state diagrams of
finite state transducers T1 and T2.

Each transition of an FST is labeled with two symbols, one designating the input
symbol for that transition and the other designating the output symbol. The two
symbols are written with a slash, /, separating them. In T1, the transition from
q1 to q2 has input symbol 2 and output symbol 1. Some transitions may have
multiple input–output pairs, such as the transition in T1 from q1 to itself. When
an FST computes on an input string w, it takes the input symbols w1 · · · wn one by
one and, starting at the start state, follows the transitions by matching the input
labels with the sequence of symbols w1 · · · wn = w. Every time it goes along a
transition, it outputs the corresponding output symbol. For example, on input
2212011, machine T1 enters the sequence of states q1, q2, q2, q2, q2, q1, q1, q1 and
produces output 1111000. On input abbb, T2 outputs 1011. Give the sequence of
states entered and the output produced in each of the following parts.

a. T1 on input 011

b. T1 on input 211

c. T1 on input 121

d. T1 on input 0202

e. T2 on input b

f. T2 on input bbab

g. T2 on input bbbbbb

h. T2 on input ε

1.25 Read the informal definition of the finite state transducer given in Exercise 1.24.
Give a formal definition of this model, following the pattern in Definition 1.5
(page 35). Assume that an FST has an input alphabetΣ and an output alphabet Γ but
not a set of accept states. Include a formal definition of the computation of an FST.
(Hint: An FST is a 5-tuple. Its transition function is of the form δ : Q×Σ−→Q×Γ.)

1.26 Using the solution you gave to Exercise 1.25, give a formal description of the ma-
chines T1 and T2 depicted in Exercise 1.24.
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Change in formal definition:
I output alphabet Γ
I transition function: δ : Q× Σ→ Q× Γ

Finite State Machines for Testing

Some Fundamental Testing problems:
I Determine the state after a test (homing/distinguishing

sequence)

I Verify that M is in a given state s (state verification)

I Conformance testing: Given M (black-box) and a FSM S
(specification), determine whether M is equivalent to S

I Machine identification: identify unknown black-box machine M



Automata Learning
Learn a FSM model of a black-box system

for protocols, security, legacy software
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SSH Learning Results

Model for SSH (Fiterau-Brostean & Vaandrager)

Regular Operations on Languages

If A and B are languages, we define:

Union: A ∪B = {x | w ∈ A or x ∈ B}
Concatenation: A ◦B = {xy|x ∈ A and y ∈ B}
(Kleene) Star: A∗ = {x1x2 . . . xk | k ≥ 0 and xi ∈ A}

We’ll see that regular languages are closed under each of these
operations.

Product Construction for Union
Let M1 = (Q1,Σ, δ1, q0

1, F1) and M2 = (Q2,Σ, δ2, q0
2, F2)

Is string w accepted by M1 or M2?

Can only read string once ⇒ run both automata in parallel
know state of M1 and M2 at each point: pair of states

⇒ state space is cartesian product Q1 ×Q2

I Q = Q1 ×Q2

I Σ is the same (common) alphabet

I δ((r1, r2), a) = (δ(r1, a), δ(r2, a))

I q0 = (q0
1, q

0
2)

I F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}
at least one automaton accepts

Other Language Operations

I Intersection
product (like for union), but F = F1 × F2 (both must accept)

I Complement
same automaton structure, swap accept/non-accept states

I Concatenation
must split string w into x ∈ L(M1) and y ∈ L(M2): where?
construction will use nondeterminism


