COMPSCI 501: Formal Language Theory

Lecture 2: Deterministic Finite Automata

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

January 25, 2019

Proposed Revised Grading

v

Homework: 36% (six homeworks)

v

Moodle quizzes: 4% (throughout semester)

v

Midterm 1: 20% (Thu Feb 21, 7 pm, ILC S131)

v

Midterm 2: 20% (Wed Apr 10, 7 pm, ILC S131)

v

Final: 20% (Thu May 9, 10:30 am, Goessmann 20)

Automata: the simplest computers

Switch: just one bit of memory

stop start

start

stop

Automata: the simplest computers

Switch: just one bit of memory

stop start

start

stop

What happens if we press “stop” in “off” state?
Should describe behavior completely

Strings and Languages

Alphabet (usually X): any nonempty finite set

String: finite sequence of symbols from the alphabet

¥*: set of all (finite) strings over X, incl. empty string (denoted €).

A language is an arbitrary subset of strings (of £*)

language alphabet

set] of set] of

L sequence of
g il

Decision problem for a language X: for a given input string

w € X, answer whether w € X

Parity: Even or Odd 7

We'll use automata to recognize languages.

0 0

OR0
1

Bit strings (0 or 1) with an odd number of ones.

qo: initial state; ¢1: accepting state




Formal Definition

A (deterministic) finite automaton is a 5-tuple (Q, X, 9, o, F):

> (@ is a finite set of states
> 3 is a finite alphabet (of input symbols)
> §:Q X X — @ is the transition function
> qo € Q is the start state

> F C (@ is the set of accept states.

Language of a DFA

Informally: M accepts string w if on input w it ends up in an
accepting state.

More precisely: let w = wijws ... w,. Then M accepts w if there is
a sequence of states rg, 71, ..., from @ such that

> 1o = qo (initial state)
» §(ri, wiy1) = i1 (transitions on symbols from string)
> r, € F (accept state)

L(M) (language of M) = set of strings accepted by M

Def. A language is called a regular language if some finite
automaton recognizes it.

Some Simple Patterns

Strings that

» start with a given string
if not, go to “dead state” (will never accept)

» end with a given string
in general, must “remember” last k£ symbols (pattern length)

> contain a given string (pattern search)
Knuth-Morris-Pratt algorithm constructs DFA for pattern

contains/ends with pattern: easy via NFA - DFA construction

Automata for a finite set of strings:
{"they”, “are", "more"
{"this", “is", "his" }

Recognizing Comments in C / C4++

Two types of comments:
/* anything */
// anything newline

other

end-of-line

Which states should be accepting?
Source file should not end inside comment

Figure: D. Eppstein

(Finite State) Transducers

Outputs a string (one output symbol for each input)
a.k.a. Mealy machines

0/0 1/1 o/

1/0 2/1 a/o

A 2/1 ‘
O OB OwN0

0/0 a/1
T, T,
Change in formal definition:

» output alphabet T’
» transition function: §: Q@ x X - @ x T’

Finite State Machines for Testing

Some Fundamental Testing problems:

» Determine the state after a test (homing/distinguishing
sequence)

» Verify that M is in a given state s (state verification)

» Conformance testing: Given M (black-box) and a FSM S
(specification), determine whether M is equivalent to S

» Machine identification: identify unknown black-box machine M




Automata Learning

Learn a FSM model of a black-box system
for protocols, security, legacy software

Model for SSH (Fiterau-Brostean & Vaandrager)

Regular Operations on Languages

If A and B are languages, we define:

Union: AUB ={z|we€ Aorxec B}
Concatenation: Ao B = {zy|z € A and y € B}
(Kleene) Star: A* = {z1x... 21 | k>0 and z; € A}

We'll see that regular languages are closed under each of these
operations.

Product Construction for Union
Let My = (Q1,%,01,4), F1) and Ms = (Q2, %, 02,43, F)

Is string w accepted by M or Ms?

Can only read string once = run both automata in parallel
know state of My and M at each point: pair of states

=> state space is cartesian product Q1 X Q2
> Q=01 XQ2
> 3 is the same (common) alphabet
» 0((r1,r2),a) = (8(r1,a),d(re,a))
> g0 = (a1, 43)

> = {(Tl,T‘Q) ‘ r e F1 or ro € F2}
at least one automaton accepts

Other Language Operations

» Intersection
product (like for union), but F' = Fy x Fy (both must accept)

» Complement
same automaton structure, swap accept/non-accept states

» Concatenation
must split string w into z € L(M;) and y € L(M3): where?
construction will use nondeterminism




