COMPSCI 501: Formal Language Theory

Lecture 19: The Recursion Theorem
Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

6 March 2019

Recursion and Self-reference

» Can a Machine Self-Reproduce?

» How can we express recursion ?

let f(...) = ... f(...) ...

but Turing machines don't have names for self-reference

» Can a machine access its own description?
and can it use that description?

A Self-Reproducing Program

Program contains:

> a tabular description of (part of) itself
> code to print that description (and the remainder)

- I+
cnar s\llj =1 « The string s is a
n ' + representation of the body
n « of this program from 0’
oY ' * to the end.
«f
\\Z’ main( )
o ! {
e int i;
(213 lines deleted) printf(*char\ts[ ] = {\n");
0 for(i=0; s[i}; i++)

printf(“\t%d, \n", s[i])
printf(“%s”, s);

(output of this program will be self-reproducing)

"

Ken Thompson, “Reflections on Trusting Trust

Self-Reference

Lemma: For any string w, we can design a Turing machine P, that
prints w and then halts.

Reworded: There is a computable function from strings to strings,
q: X" — X*, so that ¢(w) is the description of a Turing machine
P,, that prints w and then halts.

TM Q computes g(w):
On input string w:
1. Construct the following TM P,:
“On any input
1. Erase input
2. Write w on tape
3. Halt”
2. Output (P,)

A Self-Printing Turing Machine: Intuition

Print two copies of the following, the second one in quotes:
“Print two copies of the following, the second one in quotes:”

The second line is a representation of the first.
It provides to the first part (the “program”) a representation of
itself, so the program can use and process it.

Constructing a Self-Printing Turing Machine

» We compose SELF of two parts, A and B, so SELF prints
out (SELF) = (AB)

» A should print B: just take A = Pp,.
so need description of B.

Can't define B based on A in the same way (circular)

But can have B compute A from the output of A!

(B) was left on tape when A finished

so B can obtain its own description (B)

B can compute ¢((B)) = A

B combines A and B and writes (AB) = (SELF) on tape

vV vV VvV v VY




Self-Printing Turing Machine: Definition

B = Given input (M) describing TM (fragment) M:
1. Compute ¢({M))
2. Combine result with (M) into a TM
3. Print description of this TM and halt

A=)
A+B
(=Pm) —l
control for SELF l ‘ ‘ ‘ ‘ ‘ ‘

FIGURE 6.2
Schematic of SELF, a TM that prints its own description

Control starts at A, who produces B and passes control.

Recursion Theorem

SELF prints its own description.
But can a T'M obtain its own description and use it to compute?

Let T be a TM that computes a function ¢ : ¥* x ¥* — ¥*. There
is a Turing machine R that computes a function r : ¥* — ¥*:
r(w) = t((R),w).

T is arbitrary TM that takes TM description and input
R operates like T" with description of R filled in.

We can now say “obtain own description and use it" when needed.

Recursion Theorem

A-B-HT
(=Ppr)

HEEEENE

control for R

Construction in three parts:

» T is the given TM.
> Ais q((BT))
we want to preserve the input w
change ¢ to append TM description to tape content
after running A, we have w(BT) on tape
> DB: read tape, apply g, get (A)
combine A, B, T into single machine
encode this with w on tape: (R, w), pass control to T

Revisiting: Aty is undecidable

Assume decider H({M,w)).
Previous proof: Construct Test((M)) = =H (M, (M)))

Run Test((Test)) = —H({Test, (Test))) = —Test({ Test)),
contradiction

New proof: Construct the following TM B:

On input w:
1. Obtain own description (B) via recursion theorem
2. Run H on input (B, w)
3. Do the opposite of H (accept/reject)

B does the opposite of what H says it does: contradiction

Minimal Turing Machines
Def. Say M is minimal if there is no equivalent TM with a shorter
description than (M) (number of symbols).
Let MINtv = {(M)|M is a minimal TM}.
Theorem: MINTy is not Turing-recognizable.
Proof: by contradiction. Assuming an enumerator E, construct C":

C = "On input w:
1. Obtain own description (C') via recursion theorem
2. Run enumerator E' until getting a machine D longer than C
3. Simulate D on w."

D exists, since MINTy is infinite.
Since C simulates D, they are equivalent.

But C' is shorter than D, so D should not be in E’s list.

Fixed Point Version of Recursion Theorem

Def. A fixed point (fixpoint) of a function f is a value x that is
unchanged by applying the function: f(x) =«
For any transformation on Turing machines, there is a TM

unchanged by that transformation. Formally:

Theorem: Let t : ¥* — ¥x be a computable function.
Then there is a TM F for which ¢((F')) is equivalent to F.

F = “On input w:
1. Obtain own description (F') via recursion theorem
2. Compute ¢((F')) to obtain a TM G
3. Simulate G on w.”

Since F' simulates G, they are equivalent!




