Self-Reference

Lemma: For any string \(w \), we can design a Turing machine \(P_w \) that prints \(w \) and then halts.

Reworded: There is a computable function from strings to strings, \(q : \Sigma^* \rightarrow \Sigma^* \), so that \(q(w) \) is the description of a Turing machine \(P_w \) that prints \(w \) and then halts.

TM \(Q \) computes \(q(w) \):
On input string \(w \):
1. Construct the following TM \(P_w \):
 “On any input
 1. Erase input
 2. Write \(w \) on tape
 3. Halt.”
2. Output \(\langle P_w \rangle \)

Constructing a Self-Printing Turing Machine

- We compose \(SELF \) of two parts, \(A \) and \(B \), so \(SELF \) prints out \(\langle SELF \rangle = \langle AB \rangle \)
- \(A \) should print \(B \); just take \(A = P_{\langle B \rangle} \).

 so need description of \(B \).
- Can’t define \(B \) based on \(A \) in the same way (circular)
- But can have \(B \) compute \(A \) from the output of \(A \! \)!
- \(\langle B \rangle \) was left on tape when \(A \) finished
- so \(B \) can obtain its own description \(\langle B \rangle \)
- \(B \) can compute \(q(\langle B \rangle) = A \)
- \(B \) combines \(A \) and \(B \) and writes \(\langle AB \rangle = \langle SELF \rangle \) on tape
Self-Printing Turing Machine: Definition

\[B = \text{Given input } \langle M \rangle \text{ describing TM (fragment) } M: \]

1. Compute \(q(\langle M \rangle) \)
2. Combine result with \(\langle M \rangle \) into a TM
3. Print description of this TM and halt

\[A = P_B(\langle \rangle) \]

Figure 6.2

Schematic of \(SELF \), a TM that prints its own description

Control starts at \(A \), who produces \(B \) and passes control.

Recursion Theorem

\[A \rightarrow B \rightarrow T \]

\[(= P_{(BT)}) \]

Control for \(R \)

Construction in three parts:

- \(T \) is the given TM.
- \(A \) is \(q(\langle BT \rangle) \)
 - we want to preserve the input \(w \)
 - change \(q \) to append TM description to tape content
 - after running \(A \), we have \(w(\langle BT \rangle) \) on tape

- \(B \): read tape, apply \(q \), get \(\langle A \rangle \)
 - combine \(A, B, T \) into single machine
 - encode this with \(w \) on tape: \(\langle R, w \rangle \), pass control to \(T \)

Minimal Turing Machines

Def. Say \(M \) is minimal if there is no equivalent TM with a shorter description than \(\langle M \rangle \) (number of symbols).

Let \(MIN_TM = \{ \langle M \rangle | M \text{ is a minimal TM} \} \).

Theorem: \(MIN_TM \) is not Turing-recognizable.

Proof: by contradiction. Assuming an enumerator \(E \), construct \(C \):

\(C = \text{“On input } w: \)

1. Obtain own description \(\langle C \rangle \) via recursion theorem
2. Run enumerator \(E \) until getting a machine \(D \) longer than \(C \)
3. Simulate \(D \) on \(w \)

\(D \) exists, since \(MIN_TM \) is infinite.

Since \(C \) simulates \(D \), they are equivalent.

But \(C \) is shorter than \(D \), so \(D \) should not be in \(E \)'s list.

Revisiting: \(A_{TM} \) is undecidable

Assume decider \(H(\langle M, w \rangle) \).

Previous proof: Construct \(Test(\langle M \rangle) = \neg H(\langle M, \langle M \rangle \rangle) \)

Run \(Test(\langle Test \rangle) = \neg H(\langle Test, \langle Test \rangle \rangle) = \neg Test(\langle Test \rangle) \), contradiction

New proof: Construct the following TM \(B \):

On input \(w \):

1. Obtain own description \(\langle B \rangle \) via recursion theorem
2. Run \(H \) on input \(\langle B, w \rangle \)
3. Do the opposite of \(H \) (accept/reject)

\(B \) does the opposite of what \(H \) says it does: contradiction

Fixed Point Version of Recursion Theorem

Def. A fixed point (fixpoint) of a function \(f \) is a value \(x \) that is unchanged by applying the function: \(f(x) = x \)

For any transformation on Turing machines, there is a TM unchanged by that transformation. Formally:

Theorem: Let \(t : \Sigma^* \rightarrow \Sigma^* \) be a computable function.
Then there is a TM \(F \) for which \(t(\langle F \rangle) \) is equivalent to \(F \).

\(F = \text{“On input } w: \)

1. Obtain own description \(\langle F \rangle \) via recursion theorem
2. Compute \(t(\langle F \rangle) \) to obtain a TM \(G \)
3. Simulate \(G \) on \(w \).

Since \(F \) simulates \(G \), they are equivalent!