
COMPSCI 501: Formal Language Theory
Lecture 19: The Recursion Theorem

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

6 March 2019

Recursion and Self-reference

I Can a Machine Self-Reproduce?

I How can we express recursion ?
let f(. . .) = . . . f(. . .) . . .
but Turing machines don’t have names for self-reference

I Can a machine access its own description?
and can it use that description?

A Self-Reproducing Program
Program contains:
I a tabular description of (part of) itself
I code to print that description (and the remainder)

Turing Award Lecture

char s [] = I

t011

i ; i

" ~ l l l

I 'V ,] ' ~

I '~t '] l p

(213 lines deleted)
0

1;

/ ,
• The string s is a
• representation of the body
• of this program from '0 '
• to the end.
, /

main()
{

int i;

printf("char\ts[] = {kn");
for(i=0; s[i] ; i++)

printf("~t%d, \n" , s[i]);
printf("%s", s);

I
Here are some simple transliterations to al low

a non-C programmer to read this code.
= assignment
= = equal to .EQ.
!= not equal to .NE.
+ + increment
' x ' single character constant
"xxx" multiple character string
%d format to convert to decimal
%s format to convert to string
kt tab character
kn newline character

F I G U R E 1.

STAGE II
The C compiler is wri t ten in C. What I am about to
describe is one of many "chicken and egg" problems
that arise when compilers are wri t ten in their own lan-
guage. In this case, I will use a specific example from
the C compiler.

C allows a string construct to specify an init ialized
character array. The individual characters in the string
can be escaped to represent unprintable characters• For
example,

"Hello wor ld \n"

represents a string with the character "\n," representing
the new line character.

Figure 2.1 is an idealization of the code in the C
compiler that interprets the character escape sequence.
This is an amazing piece of code. It "knows" in a com-
pletely portable way what character code is compiled
for a new line in any character set. The act of knowing

then allows it to recompile itself, thus perpetuat ing the
knowledge.

Suppose we wish to alter the C compiler to include
the sequence "\v" to represent the vertical tab charac-
ter. The extension to Figure 2.1 is obvious and is pre-
sented in Figure 2.2. We then recompile the C com-
piler, but we get a diagnostic. Obviously, since the bi-
nary version of the compiler does not know about "\v,"
the source is not legal C. We must "train" the compiler.
After it "knows" what "\v" means, then our new
change will become legal C. We look up on an ASCII
chart that a vertical tab is decimal 11. We alter our
source to look like Figure 2.3. Now the old compiler
accepts the new source. We install the resulting binary
as the new official C compiler and now we can write
the portable version the way we had it in Figure 2.2.

This is a deep concept. It is as close to a "learning"
program as I have seen. You simply tell it once, then
you can use this self-referencing definition.

STAGE III
Again, in the C compiler, Figure 3.1 represents the high
level control of the C compiler where the routine "com-

c = next();
if(c != ' \ V)

return(c);
c = next();
if(c = = ' \ V)

re turn(' \ \ ') ;
if(c = = 'n ')

return('kn ');

F I G U R E 2 .2 .

c = next();
if(c ~= ' \ v)

return(c);
c = next();
if(c = = ' \ V)

return('kV);
if(c = = 'n')

re tum('kn ') ;
if(c = = 'v ')

re turn(' \v ') ;

F I G U R E 2.1 .

c = next();
if(c != ' \ V)

return(c);
c = next();
if(c = = ' \ v)

re turn(' \ \ ') ;
if(c = = 'n ')

return(' \ n ') ;
if(c = = ' v ')

return(11);

F I G U R E 2.3 .

762 Communications of the ACM August 1984 Volume 27 Number 8

Turing Award Lecture

char s [] = I

t011

i ; i

" ~ l l l

I 'V ,] ' ~

I '~t '] l p

(213 lines deleted)
0

1;

/ ,
• The string s is a
• representation of the body
• of this program from '0 '
• to the end.
, /

main()
{

int i;

printf("char\ts[] = {kn");
for(i=0; s[i] ; i++)

printf("~t%d, \n" , s[i]);
printf("%s", s);

I
Here are some simple transliterations to al low

a non-C programmer to read this code.
= assignment
= = equal to .EQ.
!= not equal to .NE.
+ + increment
' x ' single character constant
"xxx" multiple character string
%d format to convert to decimal
%s format to convert to string
kt tab character
kn newline character

F I G U R E 1.

STAGE II
The C compiler is wri t ten in C. What I am about to
describe is one of many "chicken and egg" problems
that arise when compilers are wri t ten in their own lan-
guage. In this case, I will use a specific example from
the C compiler.

C allows a string construct to specify an init ialized
character array. The individual characters in the string
can be escaped to represent unprintable characters• For
example,

"Hello wor ld \n"

represents a string with the character "\n," representing
the new line character.

Figure 2.1 is an idealization of the code in the C
compiler that interprets the character escape sequence.
This is an amazing piece of code. It "knows" in a com-
pletely portable way what character code is compiled
for a new line in any character set. The act of knowing

then allows it to recompile itself, thus perpetuat ing the
knowledge.

Suppose we wish to alter the C compiler to include
the sequence "\v" to represent the vertical tab charac-
ter. The extension to Figure 2.1 is obvious and is pre-
sented in Figure 2.2. We then recompile the C com-
piler, but we get a diagnostic. Obviously, since the bi-
nary version of the compiler does not know about "\v,"
the source is not legal C. We must "train" the compiler.
After it "knows" what "\v" means, then our new
change will become legal C. We look up on an ASCII
chart that a vertical tab is decimal 11. We alter our
source to look like Figure 2.3. Now the old compiler
accepts the new source. We install the resulting binary
as the new official C compiler and now we can write
the portable version the way we had it in Figure 2.2.

This is a deep concept. It is as close to a "learning"
program as I have seen. You simply tell it once, then
you can use this self-referencing definition.

STAGE III
Again, in the C compiler, Figure 3.1 represents the high
level control of the C compiler where the routine "com-

c = next();
if(c != ' \ V)

return(c);
c = next();
if(c = = ' \ V)

re turn(' \ \ ') ;
if(c = = 'n ')

return('kn ');

F I G U R E 2 .2 .

c = next();
if(c ~= ' \ v)

return(c);
c = next();
if(c = = ' \ V)

return('kV);
if(c = = 'n')

re tum('kn ') ;
if(c = = 'v ')

re turn(' \v ') ;

F I G U R E 2.1 .

c = next();
if(c != ' \ V)

return(c);
c = next();
if(c = = ' \ v)

re turn(' \ \ ') ;
if(c = = 'n ')

return(' \ n ') ;
if(c = = ' v ')

return(11);

F I G U R E 2.3 .

762 Communications of the ACM August 1984 Volume 27 Number 8

(output of this program will be self-reproducing)

Ken Thompson, “Reflections on Trusting Trust”
(Turing Award lecture, 1984)

Self-Reference

Lemma: For any string w, we can design a Turing machine Pw that
prints w and then halts.

Reworded: There is a computable function from strings to strings,
q : Σ∗ → Σ∗, so that q(w) is the description of a Turing machine
Pw that prints w and then halts.

TM Q computes q(w):
On input string w:

1. Construct the following TM Pw:
“On any input
1. Erase input
2. Write w on tape
3. Halt.”

2. Output 〈Pw〉

A Self-Printing Turing Machine: Intuition

Print two copies of the following, the second one in quotes:
“Print two copies of the following, the second one in quotes:”

The second line is a representation of the first.
It provides to the first part (the “program”) a representation of
itself, so the program can use and process it.

Constructing a Self-Printing Turing Machine

I We compose SELF of two parts, A and B, so SELF prints
out 〈SELF〉 = 〈AB〉

I A should print B: just take A = P〈B〉.
so need description of B.

I Can’t define B based on A in the same way (circular)
I But can have B compute A from the output of A!
I 〈B〉 was left on tape when A finished
I so B can obtain its own description 〈B〉
I B can compute q(〈B〉) = A

I B combines A and B and writes 〈AB〉 = 〈SELF〉 on tape

Self-Printing Turing Machine: Definition
B = Given input 〈M〉 describing TM (fragment) M :

1. Compute q(〈M〉)
2. Combine result with 〈M〉 into a TM
3. Print description of this TM and halt

A = P〈B〉

6.1 THE RECURSION THEOREM 247

The Turing machine SELF is in two parts: A and B. We think of A and B
as being two separate procedures that go together to make up SELF . We want
SELF to print out ⟨SELF ⟩ = ⟨AB⟩.

Part A runs first and upon completion passes control to B. The job of A is
to print out a description of B, and conversely the job of B is to print out a
description of A. The result is the desired description of SELF . The jobs are
similar, but they are carried out differently. We show how to get part A first.

For A we use the machine P⟨B⟩, described by q
(
⟨B⟩

)
, which is the result of

applying the function q to ⟨B⟩. Thus, part A is a Turing machine that prints out
⟨B⟩. Our description of A depends on having a description of B. So we can’t
complete the description of A until we construct B.

Now for part B. We might be tempted to define B with q
(
⟨A⟩

)
, but that

doesn’t make sense! Doing so would define B in terms of A, which in turn is
defined in terms of B. That would be a circular definition of an object in terms
of itself, a logical transgression. Instead, we define B so that it prints A by using
a different strategy: B computes A from the output that A produces.

We defined ⟨A⟩ to be q
(
⟨B⟩

)
. Now comes the tricky part: If B can obtain

⟨B⟩, it can apply q to that and obtain ⟨A⟩. But how does B obtain ⟨B⟩? It was
left on the tape when A finished! So B only needs to look at the tape to obtain
⟨B⟩. Then after B computes q

(
⟨B⟩

)
= ⟨A⟩, it combines A and B into a single

machine and writes its description ⟨AB⟩ = ⟨SELF ⟩ on the tape. In summary,
we have:

A = P⟨B⟩, and

B = “On input ⟨M⟩, where M is a portion of a TM:
1. Compute q

(
⟨M⟩

)
.

2. Combine the result with ⟨M⟩ to make a complete TM.
3. Print the description of this TM and halt.”

This completes the construction of SELF , for which a schematic diagram is
presented in the following figure.

FIGURE 6.2

Schematic of SELF , a TM that prints its own description

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Control starts at A, who produces B and passes control.

Recursion Theorem

SELF prints its own description.
But can a TM obtain its own description and use it to compute?

Let T be a TM that computes a function t : Σ∗ × Σ∗ → Σ∗. There
is a Turing machine R that computes a function r : Σ∗ → Σ∗:

r(w) = t(〈R〉, w).

T is arbitrary TM that takes TM description and input
R operates like T with description of R filled in.

We can now say “obtain own description and use it” when needed.

Recursion Theorem

6.1 THE RECURSION THEOREM 249

in the statement, that receives the description of the machine as an extra input.
Then the recursion theorem produces a new machine R, which operates exactly
as T does but with R’s description filled in automatically.

PROOF The proof is similar to the construction of SELF . We construct a TM
R in three parts, A, B, and T , where T is given by the statement of the theorem;
a schematic diagram is presented in the following figure.

FIGURE 6.4

Schematic of R

Here, A is the Turing machine P⟨BT ⟩ described by q
(
⟨BT ⟩

)
. To preserve

the input w, we redesign q so that P⟨BT ⟩ writes its output following any string
preexisting on the tape. After A runs, the tape contains w⟨BT ⟩.

Again, B is a procedure that examines its tape and applies q to its contents.
The result is ⟨A⟩. Then B combines A, B, and T into a single machine and ob-
tains its description ⟨ABT ⟩ = ⟨R⟩. Finally, it encodes that description together
with w, places the resulting string ⟨R, w⟩ on the tape, and passes control to T .

TERMINOLOGY FOR THE RECURSION THEOREM

The recursion theorem states that Turing machines can obtain their own de-
scription and then go on to compute with it. At first glance, this capability may
seem to be useful only for frivolous tasks such as making a machine that prints a
copy of itself. But, as we demonstrate, the recursion theorem is a handy tool for
solving certain problems concerning the theory of algorithms.

You can use the recursion theorem in the following way when designing Tur-
ing machine algorithms. If you are designing a machine M , you can include the
phrase “obtain own description ⟨M⟩” in the informal description of M ’s algo-
rithm. Upon having obtained its own description, M can then go on to use it as
it would use any other computed value. For example, M might simply print out
⟨M⟩ as happens in the TM SELF , or it might count the number of states in ⟨M⟩,
or possibly even simulate ⟨M⟩. To illustrate this method, we use the recursion
theorem to describe the machine SELF .

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Construction in three parts:
I T is the given TM.
I A is q(〈BT 〉)

we want to preserve the input w
change q to append TM description to tape content
after running A, we have w〈BT 〉 on tape

I B: read tape, apply q, get 〈A〉
combine A, B, T into single machine
encode this with w on tape: 〈R, w〉, pass control to T

Revisiting: ATM is undecidable

Assume decider H(〈M, w〉).
Previous proof: Construct Test(〈M〉) = ¬H(〈M, 〈M〉〉)
Run Test(〈Test〉) = ¬H(〈Test, 〈Test〉〉) = ¬Test(〈Test〉),
contradiction

New proof: Construct the following TM B:
On input w:

1. Obtain own description 〈B〉 via recursion theorem
2. Run H on input 〈B, w〉
3. Do the opposite of H (accept/reject)

B does the opposite of what H says it does: contradiction

Minimal Turing Machines

Def: Say M is minimal if there is no equivalent TM with a shorter
description than 〈M〉 (number of symbols).

Let MIN TM = {〈M〉|M is a minimal TM}.
Theorem: MIN TM is not Turing-recognizable.

Proof: by contradiction. Assuming an enumerator E, construct C:

C = “On input w:
1. Obtain own description 〈C〉 via recursion theorem
2. Run enumerator E until getting a machine D longer than C
3. Simulate D on w.”

D exists, since MIN TM is infinite.

Since C simulates D, they are equivalent.

But C is shorter than D, so D should not be in E’s list.

Fixed Point Version of Recursion Theorem

Def. A fixed point (fixpoint) of a function f is a value x that is
unchanged by applying the function: f(x) = x

For any transformation on Turing machines, there is a TM
unchanged by that transformation. Formally:

Theorem: Let t : Σ∗ → Σ∗ be a computable function.
Then there is a TM F for which t(〈F 〉) is equivalent to F .

F = “On input w:
1. Obtain own description 〈F 〉 via recursion theorem
2. Compute t(〈F 〉) to obtain a TM G
3. Simulate G on w.”

Since F simulates G, they are equivalent!

