Reducibility so far

Reducibility: a tool to show undecidability

Reducing A to B: use solution for B to solve A

If B is decidable, can decide A (using reduction)

If A undecidable, B also undecidable

Examples:
- reduce A_{TM} to $HALT_{TM}$
- reduce A_{TM} to E_{TM}

Computable functions

Deciding a language vs. computation

Def. A function $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M, on input w, halts with just $f(w)$ on tape.

If such a Turing machine exists, what language does it decide?

$L = \{ \langle w, f(w) \rangle \}$. Why?

Useful also to formalize transformation of machine descriptions.

Reducibility and Decidability

Theorem If $A \leq_m B$ and B is decidable, then A is decidable.

Let M be a decider for B, and f the reduction.

Decider for A does as expected -- on input w:
- compute $f(w)$
- run decider M on $f(w)$ and give same answer

Corollary If $A \leq_m B$ and A is undecidable then B is undecidable.

Proof: immediate, by contradiction from above theorem.

Revisiting Examples: Halting

Reducing A_{TM} to $HALT_{TM}$

$\langle M, w \rangle \in A_{TM}$ iff $\langle M, w \rangle \in HALT_{TM}$

Construct the machine M':

- On arbitrary input x:
 - if M accepts, accept
 - if M rejects, enter a loop implicit: if M loops, so will M'
 - $f(\langle M, w \rangle) = \langle M', w \rangle$ (same word w)

Dealing with improper input in mapping reductions:
if input not in A (invalid encoding), output something not in B.
Reducing E_{TM} to EQ_{TM}

Idea was: reduce emptiness test to comparison with simple TM M_\emptyset that has empty language.

Reduction simply needs to construct pair (M, M_\emptyset) from (M).

Reducing A_{TM} to E_{TM}

Recall construction: TM M_w that accepts at most the string w rejects everything else, then calls original recognizer M

Can define function f that takes (M, w) and constructs (M_w)

But: M accepts w if $L(M_w)$ is not empty.

So we have reduced A_{TM} to the complement $\overline{E_{TM}}$

Since complement preserves decidability, proof goes through.

But we don’t have a mapping reduction!

Mapping reduction from A_{TM} to E_{TM}?

We’ve seen a reduction, but could there be a mapping reduction?

If $A_{TM} \leq_m E_{TM}$, then $\overline{A_{TM}} \leq_m \overline{E_{TM}}$.

But $\overline{E_{TM}}$ is Turing-recognizable (why?) which would mean $\overline{A_{TM}}$ recognizable (false).

⇒ Mapping reductions may not exist! sensitive to complementation

An Exercise with Complements

If A is Turing-recognizable and $A \leq_m \overline{A}$, then A is decidable.

Complement the reduction relation:

$\overline{A} \leq_m \overline{\overline{A}}$, thus $\overline{A} \leq_m A$.

Since A is Turing-recognizable, so is A.

Therefore, A is decidable.

Reduction for Recognizers

Theorem If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable.

Sometimes, using complement may help:

$A \leq_m B$ equivalent to $\overline{A} \leq_m \overline{B}$

To prove B not recognizable, we might prove $A_{TM} \leq_m \overline{B}$

EQ_{TM} not Turing-recognizable nor co-recognizable

1. Reduce A_{TM} to $E_{Q_{TM}}$

On input (M, w), construct two machines:

M_\emptyset: rejects any input

M_w: ignore input, run M on w, report result

$f((M, w)) = (M_\emptyset, M_w)$

M_w accepts everything or nothing, depending on M’s run on w.

M_w not equivalent to M_\emptyset precisely when M accepts w.

2. Reduce A_{TM} to $\overline{E_{Q_{TM}}}$

Same construction, with M_{all} (accepts everything) instead of M_\emptyset.

M_w equivalent to M_{all} precisely when M accepts w.