
COMPSCI 501: Formal Language Theory
Lecture 18: Mapping Reducibility

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

4 March 2019

Reducibility so far

Reducibility: a tool to show undecidability

Reducing A to B: use solution for B to solve A

If B is decidable, can decide A (using reduction)
If A undecidable, B also undecidable

Examples:
reduce ATM to HALTTM
reduce ATM to ETM

Computable functions

Deciding a language vs. computation

Def. A function f : Σ∗ → Σ∗ is a computable function if some
Turing machine M , on input w, halts with just f(w) on tape.

If such a Turing machine exists, what language does it decide?

L = {〈w, f(w)〉}. Why ?

Useful also to formalize transformation of machine descriptions.

Mapping Reducibility

Def. A language A is mapping reducible to language B
(written A ≤m B) if there is a computable function f : Σ∗ → Σ∗
where for every w, w ∈ A⇔ f(w) ∈ B

strings in A are mapped to strings in B
strings not in A are mapped to strings not in B

Can answer whether w ∈ A by testing whether f(w) ∈ B

A ≤m B equivalent to A ≤m B

≤m is transitive (why?): A ≤m B ∧B ≤m C → A ≤m C

Reducibility and Decidability

Theorem If A ≤m B and B is decidable, then A is decidable.

Let M be a decider for B, and f the reduction.

Decider for A does as expected – on input w:
compute f(w)
run decider M on f(w) and give same answer

Corollary If A ≤m B and A is undecidable then B is undecidable.

Proof: immediate, by contradiction from above theorem.

Revisiting Examples: Halting

Reducing ATM to HALTTM
〈M, w〉 ∈ ATM iff 〈M, w〉 ∈ HALTTM

Construct the machine M ′:
On arbitrary input x:
if M accepts, accept
if M rejects, enter a loop
implicit: if M loops, so will M ′

f(〈M, w〉) = 〈M ′, w〉 (same word w)

Dealing with improper input in mapping reductions:
if input not in A (invalid encoding), output something not in B.



Reducing ETM to EQTM

Idea was: reduce emptiness test to comparison with simple TM M∅
that has empty language.

Reduction simply needs to construct pair 〈M, M∅〉 from 〈M〉

Reducing ATM to ETM

Recall construction: TM Mw that accepts at most the string w
rejects everything else, then calls original recognizer M

Can define function f that takes 〈M, w〉 and constructs 〈Mw〉
But: M accepts w iff L(Mw) is not empty.

So we have reduced ATM to the complement ETM

Since complement preserves decidability, proof goes through.

But we don’t have a mapping reduction!

Mapping reduction from ATM to ETM ?

We’ve seen a reduction, but could there be a mapping reduction?

If ATM ≤m ETM, then ATM ≤m ETM.

But ETM is Turing-recognizable (why?)
which would mean ATM recognizable (false).

⇒ Mapping reductions may not exist!
sensitive to complementation

An Exercise with Complements

If A is Turing-recognizable and A ≤m A, then A is decidable.

Complement the reduction relation:

A ≤m A, thus A ≤m A.

Since A is Turing-recognizable, so is A.

Therefore, A is decidable.

Reduction for Recognizers

Theorem If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

Corollary If A ≤m B and A is not Turing-recognizable then B is
not Turing-recognizable.

Sometimes, using complement may help:

A ≤m B equivalent to A ≤m B

To prove B not recognizable, we might prove ATM ≤m B

EQTM not Turing-recognizable nor co-recognizable

1. Reduce ATM to EQTM

On input 〈M, w〉, construct two machines:
M∅: rejects any input
Mw: ignore input, run M on w, report result

f(〈M, w〉) = 〈M∅, Mw〉
Mw accepts everything or nothing, depending on M ’s run on w.

Mw not equivalent to M∅ precisely when M accepts w.

2. Reduce ATM to EQTM

Same construction, with Mall (accepts everything) instead of M∅.

Mw equivalent to Mall precisely when M accepts w.


