	7
	Reducibility so far
COMPSCI 501: Formal Language Theory Lecture 18: Mapping Reducibility Marius Minea marius@cs.umass.edu University of Massachusetts Amherst	Reducibility: a tool to show undecidability Reducing A to B: use solution for B to solve A If B is decidable, can decide A (using reduction) If A undecidable, B also undecidable Examples: reduce A_{TM} to $HALT_{TM}$ reduce A_{TM} to E_{TM}
4 March 2019	
Computable functions	Mapping Reducibility
Deciding a language vs. computation Def. A function $f: \Sigma^* \to \Sigma^*$ is a computable function if some Turing machine M , on input w , halts with just $f(w)$ on tape. If such a Turing machine exists, what language does it decide? $L = \{\langle w, f(w) \rangle\}$. Why ? Useful also to formalize transformation of machine descriptions.	$\begin{array}{ c c c c c c } \hline Def. & A \mbox{ language } A \mbox{ is mapping reducible to language } B \\ (written $A \leq_{\sf m} B$) if there is a $computable function $f: $\Sigma^* \to \Sigma^*$ where for every w, $w \in A \Leftrightarrow f(w) \in B$ \\ & \mbox{ strings in } A \mbox{ are mapped to strings in } B \\ & \mbox{ strings not in } A \mbox{ are mapped to strings not in } B \\ & \mbox{ Can answer whether $w \in A$ by testing whether $f(w) \in B$ \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ Can answer whether $w \in A$ by testing whether $f(w) \in B$ \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to strings not in } B \\ & \mbox{ A degree mapped to string string whether } f(w) \in B \\ & \mbox{ A degree mapped to } B \\ & \mbox{ A degree mapped to string string mapped to } B \\ & A degree mapped to string string mapped to string $
Reducibility and Decidability	Revisiting Examples: Halting
Theorem If $A \leq_m B$ and B is decidable, then A is decidable. Let M be a decider for B , and f the reduction. Decider for A does as expected – on input w : compute $f(w)$ run decider M on $f(w)$ and give same answer Corollary If $A \leq_m B$ and A is undecidable then B is undecidable. Proof: immediate, by contradiction from above theorem.	Reducing A_{TM} to $HALT_{TM}$ $\langle M, w \rangle \in A_{TM}$ <i>iff</i> $\langle M, w \rangle \in HALT_{TM}$ Construct the machine M' : On arbitrary input x : if M accepts, <i>accept</i> if M rejects, enter a loop implicit: if M loops, so will M' $f(\langle M, w \rangle) = \langle M', w \rangle$ (same word w) Dealing with improper input in mapping reductions: if input not in A (invalid encoding), output something not in B .

Reducing E_{TM} to EQ_{TM}	Reducing A_{TM} to E_{TM}
Idea was: reduce emptiness test to comparison with simple TM M_{\emptyset} that has empty language. Reduction simply needs to construct pair $\langle M, M_{\emptyset} \rangle$ from $\langle M \rangle$	Recall construction: TM M_w that accepts at most the string w rejects everything else, then calls original recognizer M Can define function f that takes $\langle M, w \rangle$ and constructs $\langle M_w \rangle$ But: M accepts w iff $L(M_w)$ is not empty. So we have reduced A_{TM} to the complement $\overline{E_{\text{TM}}}$ Since complement preserves decidability, proof goes through. But we don't have a mapping reduction!
Mapping reduction from A_{TM} to E_{TM} ?	An Exercise with Complements
We've seen a reduction, but could there be a mapping reduction? If $A_{TM} \leq_m E_{TM}$, then $\overline{A_{TM}} \leq_m \overline{E_{TM}}$. But $\overline{E_{TM}}$ is Turing-recognizable (why?) which would mean $\overline{A_{TM}}$ recognizable (false). \Rightarrow Mapping reductions may not exist! sensitive to complementation	If A is Turing-recognizable and $A \leq_m \overline{A}$, then A is decidable. Complement the reduction relation: $\overline{A} \leq_m \overline{\overline{A}}$, thus $\overline{A} \leq_m A$. Since A is Turing-recognizable, so is \overline{A} . Therefore, A is decidable.
Reduction for Recognizers	EQ_{TM} not Turing-recognizable nor co-recognizable
Theorem If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable. Corollary If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable. Sometimes, using complement may help: $A \leq_m B$ equivalent to $\overline{A} \leq_m \overline{B}$ To prove B not recognizable, we might prove $A_{TM} \leq_m \overline{B}$	 Reduce A_{TM} to EQ_{TM} On input ⟨M, w⟩, construct two machines: M₀: rejects any input M_w: ignore input, run M on w, report result f(⟨M, w⟩) = ⟨M₀, M_w⟩ M_w accepts everything or nothing, depending on M's run on w. M_w not equivalent to M₀ precisely when M accepts w. Reduce A_{TM} to EQ_{TM} Same construction, with M_{all} (accepts everything) instead of M₀. M_w equivalent to M_{all} precisely when M accepts w.