
COMPSCI 511: Formal Language Theory

Marius Minea

Lecture 16 Notes

Rik Sengupta

March 7, 2019

The lecture today followed Section 5.1 in the textbook closely.

Recall the decidable problems we saw so far.

ADFA = {〈B,w〉 : B is a DFA that accepts input w}
EDFA = {〈B〉 : B is a DFA with L(B) = ∅}
AREX = {〈R,w〉 : R is a regex that generates the word w}

EQDFA = {〈A,B〉 : A,B are DFAs satisfying L(A) = L(B)}
ACFG = {〈G,w〉 : G is a CFG that generates the word w}
ECFG = {〈G〉 : G is a CFG satisfying L(G) = ∅}.

Of course, we also have the nondeterministic versions ANFA and ENFA decidable as well, using the
same arguments. Recall further that we couldn’t quite get a decidability proof for EQCFG similarly
to the proof for DFAs, because unlike regular languages, CFLs are not closed under intersection,
and therefore not under symmetric difference as well. (In fact, somewhat surprisingly, EQCFG will
turn out to be an undecidable language later!)

In the last class, we also saw our first two undecidable problems. In some sense, these are the
two canonical problems: most reductions you see will be from one of these.

ATM = {〈M,w〉 : M is a TM that accepts input w}
HALTTM = {〈M,w〉 : M is a TM that halts on input w}.

Now let’s look at some other undecidable problems, and show that they are undecidable by means
of reductions. Roughly speaking, reductions are just what they sound like: you reduce a problem A
to a problem B (often written as A ≤ B) if – given an instance of A – you can build an instance
of B that agrees with the answer to your instance of A. That is to say, your constructed instance
of B outputs YES if and only if your original instance of A should. The nature of this reduction
depends on the model being used in question. This will come up as a theme throughout the rest of
the semester!

Claim 1. The problem ETM = {〈M〉 : M is a TM with L(B) = ∅} is undecidable.

1

Proof. We reduce from ATM . Suppose, in order to obtain a contradiction, that ETM were decidable,
and suppose the TM R decides ETM . How might we use this “black box” machine R to build a
decider for ATM ?

Build a decider S for ATM as follows: on input 〈M,w〉, construct the description for the following
TM M1: on input x, M1 checks whether x = w, and immediately rejects if not; if x = w, then M1

simulates M on w, and behaves the same as M on w (i.e. it accepts if M accepts w, rejects if M
rejects w, and does not halt if M does not either on w). We then feed in the description of this
machine M1 as an input to our presumed decider R, which will either accept or reject. If R accepts,
we ask S to reject, and if R rejects, we ask S to accept.

Why would this be a correct decider for ATM ? Observe that we used our inputs M and w and
constructed an auxiliary machine M1, not in order to run it on any input, but just in order to
obtain a description of it in order to run it as an input to our supposed decider R. What is the
purpose of this machine M1? Well, M1 rejects all inputs that are not w, and behaves the same as
M on the input w. So at most, the only string M1 can possibly accept is the string w, and even
that is only when M accepts it as well. In other words, there are only two possibilities for the
language recognized by M1: it is ∅ precisely when M does not accept w, and it is the singleton
set {w} precisely when M accepts w. So if we had a way of distinguishing these two possibilities
for the language recognized by M1, we would know whether M would accept w or not. One way of
distinguishing the two possibilities is to check whether L(M1) = ∅ or not. But fortunately, we have
a decider – R – that checks precisely that, and always returns us a yes/no answer! So we have just
found a deciding protocol that tells us whether M accepts w or not, and in effect we have built a
decider for ATM , which we know from the previous lecture is impossible.

It follows that we must have made a false assumption somewhere. Since the only assumption we
made was the existence of the decider R, it follows that such an R cannot exist, or in other words,
ETM is undecidable.

Claim 2. The problem REGULARTM = {〈M〉 : M is a TM; L(M) is regular} is undecidable.

Proof. This is similar in spirit to the last reduction. We reduce from ATM . Suppose, in order to
obtain a contradiction, that REGULARTM were decidable, and suppose the TM R decides it. How
might we use this “black box” machine R to build a decider for ATM ?

Build a decider S for ATM as follows: on input 〈M,w〉, construct the description for the following
TM M1: on input x, M1 checks whether x is of the form 0n1n for some n, and if so, it immediately
accepts; if x is not of that form, M1 simulates M on w, and behaves the same as M on w (i.e. it
accepts if M accepts w, rejects if M rejects w, and does not halt if M does not either on w). We
then feed in the description of this machine M1 as an input to our presumed decider R, which will
either accept or reject. If R accepts, we ask S to accept, and if R rejects, we ask S to reject.

Why would this be a correct decider for ATM ? Again we constructed the auxiliary machine M1,
not in order to run it on any input, but just in order to obtain a description of it in order to run it as
an input to our supposed decider R. You can convince yourself that there are only two possibilities
for the language recognized by M1: M1 recognizes the nonregular language {0n1n : n ∈ N} precisely
when M does not accept w, and M1 recognizes the regular language Σ∗ precisely when M does
accept w. Again, it follows that if we had a way of distinguishing these two possibilities for the
language recognized by M1, we would know whether M would accept w or not. The decider R gives
us a way of distinguishing this, and gives us a deciding protocol that tells us whether M accepts w
or not. So once again, we have built a decider for ATM , which we know from the previous lecture is
impossible, proving that REGULARTM must be undecidable as well.

2

Sometimes it makes sense to reduce from other languages known to be undecidable, though in
most cases ATM suffices. Here is an example where it is easier to reduce from a different language
(though an ATM -reduction is also possible).

Claim 3. The problem EQTM = {〈M1,M2〉 : M1,M2 are TMs; L(M1) = L(M2)} is undecidable.

Proof. We reduce from ETM . Suppose, in order to obtain a contradiction, that EQTM were decid-
able, and suppose the TM R decides it. How might we use this “black box” machine R to build a
decider for ETM ?

Build a decider S for ETM as follows: on input 〈M〉, just construct the trivial TM M∅ that
rejects all inputs (this is easy to construct: do you see what it would look like?). The decider S will
simply run R on the input 〈M,M∅〉. Since R is a decider, it will either accept or reject. If R accepts,
it means that the language recognized by M is the same as the language recognized by M∅, which
is just ∅, and is the same as saying M is the empty language. If R rejects, this means the language
is not ∅, and so L(M) is nonempty. Either way, we have a definitive answer, so S will output the
same as what R does. It is important to convince yourself of the validity of this argument.

We now switch gears for a bit, and talk about computation histories, in the lead-up to discussing
LBAs.

Definition 1. Given a TM M and an input string w, an accepting computation history for M on
w is a finite sequence

C1, C2, . . . , C`,

where each Ci is a valid configuration of M , C1 is the correct initial configuration of M on the input
w, C` is an accepting configuration, and each Ci follows correctly from Ci−1 under the transition
function of M .

A rejecting computation history is defined exactly analogously, except that we require C` to be a
rejecting configuration.

With all this in mind, let’s look at yet another model of computation that we have not seen so
far in this course.

Definition 2. A linear-bounded automaton, or an LBA for short, is a TM with an additional
constraint: the tape head is not allowed to move past the input in either direction – left or right.

You can think about an LBA as essentially the same as a TM, with one critically important
difference: limited memory. Just because LBAs have limited memory, though, does not mean they
are not a powerful model. Every decider you have encountered in the class so far as been an LBA.
However, as you might imagine, the limitation on its memory means that it is quite easy to verify
whether some particular string w is accepted by an LBA. We formalize this below.

Claim 4. The LBA-acceptance problem ALBA = {〈M,w〉 : M is an LBA that accepts input w} is
decidable.

Proof. Let M be an LBA with a given input w. We know the tape head is not allowed to move past
the left or right end of w, so the entire computation has to happen in the n := |w| cells defined by
the input position. How many different configurations are there of M , given this constraint? If M
has q states, and the size of the tape alphabet |Γ| = g, then at any “snapshot” of the computation,

3

we can be in any of the q states, the tape head can be in any of the n positions, and each cell can
have any of the g symbols, leading to a total of qngn possibilities. Because there are only this many
distinct possibilities, it means that if M halts on w, it had better do so within qngn steps; otherwise,
we will have repeated a configuration, and then we can never halt, since we will always keep looping.
This observation means we have the following decider for ALBA. On input 〈M,w〉, simulate M on
w for qngn steps, as defined above. If M halts in that time, then output whatever M outputs. If
M does not halt, then reject.

Interestingly, however, it turns out that the emptiness problem for LBAs is undecidable. If this
seems counterintuitive, note that you cannot run the same technique as the other easier emptiness
problem deciders, because those essentially use graph search, but here you can’t use graph search
without having a bound on what a potential input size might be. We have the following claim.

Claim 5. The LBA-emptiness problem ELBA = {〈M〉 : M is an LBA; L(M) = ∅} is undecidable.

Proof. As is typical, the reduction is from ATM . We wish for a proof along the same lines. If ELBA

were decidable, suppose some TM R decides it. For the purposes of our proof, we will be more
interested in R′, the TM that decides the complement of ELBA (which must exist if R exists). We
want to use this to construct a TM S that decides ATM for the contradiction. We want to build S
such that, on input 〈M,w〉, we can construct some LBA M1 such that R′ accepts 〈M1〉 if and only if
M accepts w. In other words, we want the language of M1 to be nonempty if and only if M accepts
w.

What might the language recognized by this M1 be? We claim that this is precisely the set of
accepting computation histories of the machine M on the input w. If M accepts w, there is such
a valid accepting computation history, so L(M1) 6= ∅. If M does not accept w, similarly, we must
have L(M1) = ∅. It only remains for us to show that, given an input to M1, it can in fact check
whether it is a valid accepting computation history for M on w in the space bound it has.

We can easily define M1: on input x, it first checks whether x is in the right format, namely that
x looks like

#C1#C2# . . .#C`#

where the symbol # is a delimiter between adjacent configurations. Next, M1 verifies that C1 is the
correct start configuration of M on w, i.e. that C1 looks like q0w1w2 . . . wk, and that C` has qaccept
in it. Finally, it zigzags across adjacent configurations Ci−1 and Ci, and verifies that Ci follows from
Ci−1 using consistent transition rules from M . All of this can be done without the tape head ever
moving past the ends of the input, and so M1 is indeed a valid LBA.

You should convince yourself that this indeed gives you the contradiction you want, namely that
it enables you to build a decider for ATM . For specific details as well as minute but important
checks, please refer to the textbook.

Using very similar techniques, we can even prove the following claim, about an interesting lan-
guage involving CFLs that at first glance has nothing to do with accepting computation histories.

Claim 6. The CFG-universality problem ALLCFG = {〈G〉 : G is a CFG; L(G) = Σ∗} is undecid-
able.

We omit the proof here, and refer to the textbook for the details, including a very important
observation on how to represent inputs as alternating between a configuration represented normally

4

and a configuration represented in reverse, to account for the structure of the stack. We do note the
following important corollary, which we mentioned briefly at the beginning of class.

Claim 7. The CFG-equivalence problem EQCFG = {〈G1, G2〉 : G1, G2 are CFGs; L(G1) = L(G2)}
is undecidable.

Proof. This follows immediately from the previous claim. If EQCFG were decidable, say with decider
D, then we could use this to build a decider for ALLCFG as follows. On input 〈G〉, we can construct
the following trivial grammar GALL, defined by the simple rules {S → σS|ε : σ ∈ Σ ∪ ε}. Once we
do this, we can run D on the input 〈G,GALL. If D accepts, our decider accepts; if D rejects, our
decider rejects as well. Convince yourself that this is a valid reduction, and note that this means
we have a contradiction (since ALLCFG is undecidable), proving that EQCFG must be undecidable
as well.

5

