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Review: Decidable problems

For regular and context-free languages:

Acceptance problem

Given a pair of finite automaton / regular expression / grammar,
and a string, is the string accepted / generated ?

Emptiness problem

Is a language defined by a finite automaton / regular expression /
grammar empty ?

Equivalence Problem

Do two finite automata / regular expressions recognize the same
language? decidable

Do two CFGs generate the same language ? undecidable

Acceptance Problem for Turing Machines

ATM = {〈M, w〉 |M is a TM that accepts string w}

AT M is Turing-recognizable: simulate M on input w, accept and
reject accordingly.

Universal Turing machine: can simulate any Turing machine
think: general purpose processor

Countable sets

We say two sets A and B are the same size if there exists a
bijective function f : A→ B (a correspondence) between them

injective (one-to-one): x 6= y → f(x) 6= f(y)
surjective (onto) ∀y ∈ B∃x ∈ A : f(x) = y

Can now compare sizes also for infinite sets.

A set is countable if it is finite or has the same size as N.
equivalently: the same size as some subset of N
or: the is a one-to-one function from the set to N

Diagonalization: Rationals are Countable

1/1 1/2 1/3 1/4 . . .
2/1 2/2 2/3 2/4 . . .
3/1 3/2 3/3 3/4 . . .
. . . . . . . . . . . . . . .

Count elements by diagonal (m/n with m + n constant):
1/1, 1/2, 2/1, 1/3, 2/2, 3/3, 1/4, 2/3, 3/2, 4/1, . . .

ignore repetitions, they don’t matter

Closure of Countable Sets

The union of two countable sets is countable

A countable union of countable sets is countable
C countable, Ai countable for i ∈ C ⇒ ⋃

i∈C Ai is countable

The cartesian product A×B of two countable sets is countable
same as for rationals

If A is countable, A∗ = ⋃
k≥0 Ak is countable



Diagonalization: Reals are Uncountable

Assume reals were countable and enumerate all reals in interval [0,
1) (in decimal notation)

r1 = 0. d11 d12 d13 . . . 0.12749...
r2 = 0. d21 d22 d23 . . . 0.2340567...
r3 = 0. d31 d32 d33 . . . 0.35790856...

. . . . . . . . .

Construct another real number x = 0.d1d2d3 . . . digit by digit:
let di be different from dii (ith digit of ith number.

For instance, take di = dii − 1 if dii > 0 and di = 1 if dii = 0
(avoid duplicate representions with 9: 0.1999. . . = 0.2)

We get a number x which is not in the sequence
⇒ reals are uncountable

Cantor’s Theorem: |X| < |P(X)|
There is no bijection between any set and its powerset.

Easy to see for finite sets, n < 2n. In general:

Assume a bijection f : X → P(X) exists.
Construct the set: Y = {x ∈ X | x 6∈ f(x)}

Since Y ∈ P(X), and f is bijective, there is y ∈ X with f(y) = Y .
We examine whether y ∈ Y , or equivalently, y ∈ f(y).

If y ∈ Y , since Y = f(y), we get y ∈ f(y), so y does not observe
the required condition for Y , contradiction.

If y 6∈ Y , then y 6∈ f(y) so y observes the condition for Y , and we
should have y ∈ Y , contradiction.

Thus a bijection cannot exist.

The set of all languages is uncountable

From Cantor’s theorem, Σ∗ countable, P(Σ∗) is not.

Or: The set B of all infinite binary sequences is uncountable
{0, 1}ω : corresponds to set of all real numbers in [0, 1]

Let L = P(Σ∗) be the set of all languages over Σ.
Construct a bijection from L to B.
Let Σ∗ = {s1, s2, s3, . . .}.
Construct characteristic sequence of language A ∈ Σ∗:

bit bi = 1 if si ∈ A, and bi = 0 if si /∈ A.

Clearly this is a bijection. So L is uncountable.

There are more languages than Turing machines
⇒ some languages are not recognizable (thus also undecidable).

ATM is Undecidable
ATM = {〈B, w〉 | B is a TM that accepts string w}
Assume there were a Turing machine H that decides ATM:

H(〈M, w ) =
{

accept if M accepts w
reject if M does not accept w

M can be encoded, so can run H(〈M, 〈M〉〉)
Construct TM D that calls H and then does the oopposite:
D: 1. run H on input 〈M, 〈M〉〉

2. if H accepts, reject; if H rejects, accept

D(〈M ) =
{

accept if M does not accept 〈M〉
reject if M accepts 〈M〉

Now consider D(〈D ) =
{

accept if D does not accept 〈D〉
reject if D accepts 〈D〉

D does the opposite of itself, contradiction! ⇒ H cannot exist.

Connection to Diagonalization
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In the following figure, we added D to Figure 4.20. By our assumption, H is
a TM and so is D. Therefore, it must occur on the list M1, M2, . . . of all TMs.
Note that D computes the opposite of the diagonal entries. The contradiction
occurs at the point of the question mark where the entry must be the opposite
of itself.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ · · · ⟨D⟩ · · ·
M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject

· · ·
reject

· · ·
M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?

...
...

. . .

FIGURE 4.21

If D is in the figure, a contradiction occurs at “?”

A TURING-UNRECOGNIZABLE LANGUAGE

In the preceding section, we exhibited a language—namely, ATM—that is un-
decidable. Now we exhibit a language that isn’t even Turing-recognizable.
Note that ATM will not suffice for this purpose because we showed that ATM

is Turing-recognizable (page 202). The following theorem shows that if both
a language and its complement are Turing-recognizable, the language is decid-
able. Hence for any undecidable language, either it or its complement is not
Turing-recognizable. Recall that the complement of a language is the language
consisting of all strings that are not in the language. We say that a language is co-
Turing-recognizable if it is the complement of a Turing-recognizable language.

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement
are Turing-recognizable.

PROOF Wehave two directions to prove. First, ifA is decidable, we can easily
see that both A and its complement A are Turing-recognizable. Any decidable
language is Turing-recognizable, and the complement of a decidable language
also is decidable.
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A Turing-Unrecognizable Language
Recognizing = accept for sure; may or may not reject

Reverse roles: A language is co-Turing-recognizable if it is the
complement of a Turing-recognizable language.

Theorem: A language is decidable iff it is Turing-recognizable and
co-Turing-recognizable.

“⇒”: A decidable ⇒ A decidable (reverse accept/reject)
⇒ both are recognizable

“⇐”: Let M1 be recognizer for A and M2 recognizer for A.
run M1 and M2 in parallel
if M1 accepts, accept; if M2 accepts, reject (one will happen)

Corollary: ATM is not Turing-recognizable.

If it were, since ATM is recognizable, it would be decidable!


