<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Review: Decidable problems For regular and context-free languages: Acceptance problem Given a pair of finite automaton / regular expression / grammar, and a string, is the string accepted / generated ? Emptiness problem Is a language defined by a finite automaton / regular expression / grammar empty ? Equivalence Problem Do two finite automata / regular expressions recognize the same language? decidable Do two CFGs generate the same language ? undecidable		
Acceptance Problem for Turing Machines	Countable sets We say two sets A and B are the same size if there exists a bijective function $f: A \rightarrow B$ (a correspondence) between them		
 A_{TM} = {⟨M, w⟩ M is a TM that accepts string w} A_{TM} is Turing-recognizable: simulate M on input w, accept and reject accordingly. Universal Turing machine: can simulate any Turing machine think: general purpose processor 	bijective function $f: A \to B$ (a correspondence) between them injective (one-to-one): $x \neq y \to f(x) \neq f(y)$ surjective (onto) $\forall y \in B \exists x \in A : f(x) = y$ Can now compare sizes also for infinite sets. A set is countable if it is finite or has the same size as \mathbb{N} . equivalently: the same size as some subset of \mathbb{N} or: the is a one-to-one function from the set to \mathbb{N}		
Diagonalization: Rationals are Countable	Closure of Countable Sets		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The union of two countable sets is countable A countable union of countable sets is countable C countable, A_i countable for $i \in C \Rightarrow \bigcup_{i \in C} A_i$ is countable The cartesian product $A \times B$ of two countable sets is countable same as for rationals If A is countable, $A^* = \bigcup_{k \ge 0} A^k$ is countable		

Diagonalization: Reals are Uncountable

Assume reals were countable and enumerate all reals in interval [0, 1) (in decimal notation)

$r_1 = 0.$	d_{11}	d_{12}	d_{13}	 0. <mark>1</mark> 2749
$r_2 = 0.$	d_{21}	d_{22}	d_{23}	 0.2 <mark>3</mark> 40567
$r_3 = 0.$	d_{31}	d_{32}	d_{33}	 0.35 <mark>7</mark> 90856

Construct another real number $\mathbf{x} = 0.d_1d_2d_3...$ digit by digit: let d_i be **different** from d_{ii} (ith digit of ith number.

For instance, take $d_i = d_{ii} - 1$ if $d_{ii} > 0$ and $d_i = 1$ if $d_{ii} = 0$ (avoid duplicate representions with 9: 0.1999... = 0.2)

We get a number ${\bf x}$ which is not in the sequence \Rightarrow reals are uncountable

The set of all languages is uncountable

From Cantor's theorem, Σ^* countable, $\mathcal{P}(\Sigma^*)$ is not.

Or: The set $\mathcal B$ of all **infinite** binary sequences is uncountable $\{0,1\}^{\omega}$: corresponds to set of all real numbers in [0, 1]

Let $\mathcal{L} = \mathcal{P}(\Sigma^*)$ be the set of all languages over Σ . Construct a bijection from \mathcal{L} to \mathcal{B} .

Let $\Sigma^* = \{s_1, s_2, s_3, \ldots\}$. Construct **characteristic sequence** of language $A \in \Sigma^*$: bit $b_i = 1$ if $s_i \in A$, and $b_i = 0$ if $s_i \notin A$.

Clearly this is a bijection. So \mathcal{L} is uncountable.

There are more languages than Turing machines \Rightarrow some languages are not **recognizable** (thus also undecidable).

Connection to Diagonalization

Cantor's Theorem: $|X| < |\mathcal{P}(X)|$

There is no bijection between any set and its powerset.

Easy to see for finite sets, $n < 2^n$. In general:

Assume a bijection $f: X \to \mathcal{P}(X)$ exists. Construct the set: $Y = \{x \in X \mid x \notin f(x)\}$

Since $Y \in \mathcal{P}(X)$, and f is bijective, there is $y \in X$ with f(y) = Y. We examine whether $y \in Y$, or equivalently, $y \in f(y)$.

If $y \in Y$, since Y = f(y), we get $y \in f(y)$, so y does not observe the required condition for Y, contradiction.

If $y \notin Y$, then $y \notin f(y)$ so y observes the condition for Y, and we should have $y \in Y$, contradiction.

Thus a bijection cannot exist.

A_{TM} is Undecidable

 $A_{\mathsf{TM}} = \{ \langle B, w \rangle \mid B \text{ is a TM that accepts string } w \}$

Assume there were a Turing machine H that decides A_{TM} :

$$H(\langle M, w \) = \begin{cases} accept & \text{if } \mathsf{M} \text{ accepts } \mathsf{w} \\ reject & \text{if } \mathsf{M} \text{ does not accept } \mathsf{w} \end{cases}$$

M can be encoded, so can run $H(\langle M, \langle M \rangle \rangle)$ Construct TM D that calls H and then does the oopposite: D: 1. run H on input $\langle M, \langle M \rangle \rangle$ 2. if H accepts, reject; if H rejects, accept

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

Now consider $D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$

D does the opposite of itself, contradiction! \Rightarrow H cannot exist.

A Turing-Unrecognizable Language

Recognizing = accept for sure; may or may not reject

Reverse roles: A language is **co-Turing-recognizable** if it is the complement of a Turing-recognizable language.

Theorem: A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

" \Rightarrow ": A decidable $\Rightarrow \overline{A}$ decidable (reverse accept/reject) \Rightarrow both are recognizable

" \Leftarrow ": Let M_1 be recognizer for A and M_2 recognizer for \overline{A} . run M_1 and M_2 in parallel if M_1 accepts, accept; if M_2 accepts, reject (one will happen)

Corollary: $\overline{A_{TM}}$ is not Turing-recognizable.

If it were, since A_{TM} is recognizable, it would be decidable!