Turing-Recognizable and Decidable Languages

Recall: **Recursively Enumerable = Recognizable**
- Enumerate all strings in language
- Compare with given input; if equal, accept

Recall: **Decidable ⊊ Recognizable**
- Both: will accept all strings in language
- Decide: will reject all strings not in language
- Recognize: may loop forever on strings not in language

Can’t we just wait some time and then report “no”? might not be able to bound potentially good answers

First-Order Logic: Recognizable

Consistency: every formula that can be **proved** is **valid**

Completeness: every **valid** formula can be **proved**

Caveat: only says something about **valid** formulas:
- if not valid, can’t be proved (consistency – good!)
 - but might not be able to **disprove** it

Connection:
- can **enumerate** all proofs (of anything), and check none matches can’t tell when to stop

Can recognize language (**valid** formulas)
- Can’t recognize **complement** (formulas that are not valid) not **decidable**

Acceptance Problem for DFA

Will a given DFA accept a given string?

Is this the same as asking “is a regular language decidable”?
No. Language of strings vs. language of pairs (DFA, string)

- $A_{DFA} = \{ (B, w) \mid B \text{ is a DFA that accepts string } w \}$

TM with control of **given** DFA (just scans tape) vs. TM that can **simulate any** DFA description
- check if valid DFA encoding
- store automaton state and input position on tape
- update state/position at each step according to DFA.

Acceptance Problem for NFA

$A_{NFA} = \{ (B, w) \mid B \text{ is a NFA that accepts string } w \}$

How would we simulate a **nondeterministic** automaton?

- With a nondeterministic Turing Machine
 - when processing transition list, nondeterministically choose current one, or skip to next
- By simulating NFA computations
 - breadth-first traversal of computation tree
 - keep list with current state for each execution branch
- By converting NFA to DFA (subset construction) – step 1
 - and then using TM for DFS acceptance problem – step 2

Same way for string membership in regular expression

$A_{REX} = \{ (R, w) \mid R \text{ is a regular expression that generates string } w \}$

Testing Regular Language Emptiness

Why test for an empty language?

- incompatible constraints: $L_1 \cap L_2 = \emptyset$
 - check language inclusion $L_1 \subseteq L_2 \leftrightarrow L_1 \cap \overline{L_2} = \emptyset$
- $E_{DFA} = \{ (A) \mid A \text{ is a DFA and } L(A) = \emptyset \}$

- traverse DFA states from start (BFS/DFS/any)
 - until accept state reached or no new states marked
Equivalence of DFAs

\[EQ_{\text{DFA}} = \{ (A, B) \mid A, B \text{ are DFAs and } L(A) = L(B) \} \]

\[L(A) = L(B) \iff L(A) \Delta L(B) = \emptyset \]

Construct automaton for \(L(A) \Delta L(B) \)
Check emptiness

CFL Membership Test

\[AC_{\text{CFG}} = \{ (G, w) \mid G \text{ is a CFG that generates string } w \} \]

Could we enumerate all derivations and check them in turn?
this works for strings in the language (recognizer)
will never stop if \(w \not\in L(G) \) and \(G \) has infinitely many derivations
(usually the case)

Can we bound the number of derivations required for \(w \)?

Chomsky normal form: \(A \rightarrow BC, \ A \rightarrow a \) (or \(S \rightarrow \epsilon \))
one derivation to get each terminal \((n)\)
\(n - 1 \) derivations to get from \(S \) to \(n \) nonterminals

Generate all derivations of \(2n - 1 \) steps, check if one generates \(w \)

CFL Emptiness Test

\[EC_{\text{CFG}} = \{ G \mid G \text{ is a CFG and } L(G) = \emptyset \} \]

When would the language of a grammar be empty?
when derivations can’t reach any nonterminal strings

Check for each variable whether it can generate string of terminals
compute a boolean \(t(V) \); answer given by \(t(S) \)
rule \(A \rightarrow U_1 U_2 \ldots U_k \) tells us value \(t(A) = t(U_1) \wedge \ldots \wedge t(U_k) \)
if all \(U_i \) marked, mark \(A \)
repeat until stable (no new symbols marked)

Can use for lots of other problems:
does variable generate empty string?
What terminals can strings from \(V \) contain/start/end with?

Least fixpoint computation: always terminates if set of computed values is monotone and bounded.

CFG Equivalence ?

\[EQ_{\text{CFG}} = \{ (G, H) \mid G, H \text{ are CFGs and } L(G) = L(H) \} \]

Idea from DFAs: \(L(G) = L(H) \iff L(G) \Delta L(H) = \emptyset \)

\[L(G) \Delta L(H) = (L(G) \setminus L(H)) \cup (L(H) \setminus L(G)) \]

But CFGs are not closed under complement! \(\Rightarrow \) can’t use!

In fact, CFG equivalence is undecidable (we’ll see).

CFLs are Decidable

Theorem: Every context-free language is decidable

Why can’t we just simulate the PDA for \(L \) with a TM (more powerful)?

DFAs/NFAs always stop (finite string), but PDAs may not
TM “clone” of PDA may also not stop \(\Rightarrow \) recognizer, not decider

But we already have a Turing-machine that for any \((G, w) \) checks whether \(w \in L(G) \)
perticularize it for given \(G \) (build \(G \) in)
with input \(w \), will decide \(L(G) \)

regular \(\subset \) context-free \(\subset \) decidable \(\subset \) Turing-recognizable