
COMPSCI 501: Formal Language Theory
Lecture 14: Decidable Problems

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

22 February 2019

Turing-Recognizable and Decidable Languages

Recall: Recursively Enumerable = Recognizable
I Enumerate all strings in language
I Compare with given input; if equal, accept

Recall: Decidable (Recognizable

Both: will accept all strings in language

Decide: will reject all strings not in language

Recognize: may loop forever on strings not in language

Can’t we just wait some time and then report “no” ?
might not be able to bound potentially good answers

First-Order Logic: Recognizable

Consistency: every formula that can be proved is valid

Completeness: every valid formula can be proved

Caveat: only says something about valid formulas:
if not valid, can’t be proved (consistency – good!)
but might not be able to disprove it

Connection:
can enumerate all proofs (of anything), and check none matches
can’t tell when to stop

Can recognize language (valid formulas)
Can’t recognize complement (formulas that are not valid)
not decidable

Acceptance Problem for DFA

Will a given DFA accept a given string ?

Is this the same as asking “is a regular language decidable”?
No. Language of strings vs. language of pairs (DFA, string)
ADFA = {〈B, w〉 | B is a DFA that accepts string w}

TM with control of given DFA (just scans tape) vs.
TM that can simulate any DFA description

check if valid DFA encoding
store automaton state and input position on tape
update state/position at each step according to DFA.

Acceptance Problem for NFA

ANFA = {〈B, w〉 | B is a NFA that accepts string w}
How would we simulate a nondeterministic automaton ?
I With a nondeterministic Turing Machine

when processing transition list, noindeterministically choose
current one, or skip to next

I By simulating NFA computations
breadth-first traversal of computation tree
keep list with current state for each execution branch

I By converting NFA to DFA (subset construction) – step 1
and then using TM for DFS acceptance problem – step 2

Same way for string membership in regular expression

AREX = {〈R, w〉 | R is a regular expression that generates string w}

Testing Regular Language Emptiness

Why test for an empty language ?
incompatible constraints: L1 ∩ L2 = ∅
check language inclusion L1 ⊆ L2 ↔ L1 ∩ L2 = ∅

EDFA = {〈A〉 | A is a DFA and L(A) = ∅}

traverse DFA states from start (BFS/DFS/any)
until accept state reached or no new states marked

Equivalence of DFAs

EQDFA = {〈A, B〉 | A, B are DFAs and L(A) = L(B)}

L(A) = L(B)↔ L(A)∆L(B) = ∅
Construct automaton for L(A)∆L(B)
Check emptiness

CFL Membership Test

ACFG = {〈G, w〉 | G is a CFG that generates string w}
Could we enumerate all derivations and check them in turn ?

this works for strings in the language (recognizer)
will never stop if w /∈ L(G) and G has infinitely many derivations

(usually the case)

Can we bound the number of derivations required for w ?

Chomsky normal form: A→ BC, A→ a (or S → ε)
one derivation to get each terminal (n)
n− 1 derivations to get from S to n nonterminals

Generate all derivations of 2n− 1 steps, check if one generates w

CFL Emptiness Test

ECFG = {〈G〉 | G is a CFG and L(G) = ∅}
When would the language of a grammar be empty?

when derivations can’t reach any nonterminal strings

Check for each variable whether it can generate string of terminals
= compute a boolean t(V); answer given by t(S)

rule A→ U1U2 . . . Uk tells us value t(A) = t(U1) ∧ . . . ∧ t(Uk)
if all Ui marked, mark A
repeat until stable (no new symbols marked)

Can use for lots of other problems:
does variable generate empty string?
What terminals can strings from V contain/start/end with?

Least fixpoint computation: always terminates if set of computed
values is monotone and bounded.

CFG Equivalence ?

EQCFG = {〈G, H〉 | G, H are CFGs and L(G) = L(H)

Idea from DFAs: L(G) = L(H)↔ L(G)∆L(H) = ∅

L(G)∆L(H) = (L(G) \ L(H)) ∪ (L(H) \ L(G))

But CFGs are not closed under complement! ⇒ can’t use!

In fact, CFG equivalence is undecidable (we’ll see).

CFLs are Decidable

Theorem: Every context-free language is decidable

Why can’t we just simulate the PDA for L with a TM
(more powerful)?

DFAs/NFAs always stop (finite string), but PDAs may not
TM “clone” of PDA may also not stop ⇒ recognizer, not decider

But we already have a Turing-machine that for any (G, w) checks
whether w ∈ L(G)

particularize it for given G (build G in)
with input w, will decide L(G)

regular ⊂ context-free ⊂ decidable ⊂ Turing-recognizable

