	Recap: Recognize vs. Decide
COMPSCI 501: Formal Language Theory Lecture 12: Variants of Turing MachinesMarius Minea marius@cs.umass.eduUniversity of Massachusetts Amherst	 For given initial tape contents, a Turing machine could halt in the accept state halt in the reject state loop forever (not halt) Recognize: accept all and only the strings in the language (reject or loop otherwise) Decide: TM never loops (either accepts or rejects) Deciding is stronger than recognizing. Some Turing-recognizable languages are not Turing-decidable (will see later).
From DFAs to Turing Machines	Do Details Matter?
 Extra capabilities of TM: 1. can move both ways on tape (revisit input) 2. can write on tape 3. can use additional unlimited memory Adding just (1): two-way automata (recall CS 250) Result (surprising?): same as normal DFA. Add (1) and (2): linear bounded automata context-sensitive languages 	A Turing Machine is a 7-tuple What can change in the definition while keeping the essence? Automata: DFA / NFA / ε-transitions: same Pushdown automata: Normalizing moves (either push or pop): same expressiveness Nondeterminism mattered ! "Robustness" of definition
First Change: Stay Put	Multitape Turing Machines
Our looping constructions so far often "overshoot" by one: "find first symbol of certain kind" when found, must do something: move left or right but perhaps we want to stay / start a sweep there Change transition function to $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$ S = stay in place Does this change anything? Clearly we can model "stay put" by inserting move right, then left. why not the other way around?	 Each tape has its own read/write head Input is initially on tape 1, other tapes blank Heads move/read/write simultaneously δ: Q × Γ^k → Q × Γ^k × {L, R, S}^k One transition: δ(q_i, a₁,a_k) = (q_j, b₁,, b_k, R, L,, R) Does this add expressive power?

