
COMPSCI 501: Formal Language Theory
Lecture 12: Variants of Turing Machines

Marius Minea
marius@cs.umass.edu

University of Massachusetts Amherst

19 February 2019

Recap: Recognize vs. Decide

For given initial tape contents, a Turing machine could
I halt in the accept state
I halt in the reject state
I loop forever (not halt)

Recognize: accept all and only the strings in the language
(reject or loop otherwise)

Decide: TM never loops (either accepts or rejects)

Deciding is stronger than recognizing.

Some Turing-recognizable languages are not Turing-decidable
(will see later).

From DFAs to Turing Machines

Extra capabilities of TM:

1. can move both ways on tape (revisit input)
2. can write on tape
3. can use additional unlimited memory

Adding just (1): two-way automata (recall CS 250)
Result (surprising?): same as normal DFA.

Add (1) and (2): linear bounded automata
context-sensitive languages

Do Details Matter?

A Turing Machine is a 7-tuple . . .

What can change in the definition while keeping the essence?

Automata: DFA / NFA / ε-transitions: same

Pushdown automata:
Normalizing moves (either push or pop): same expressiveness

Nondeterminism mattered !

“Robustness” of definition

First Change: Stay Put

Our looping constructions so far often “overshoot” by one:

“find first symbol of certain kind”
when found, must do something: move left or right
but perhaps we want to stay / start a sweep there

Change transition function to δ : Q× Γ→ Q× Γ× {L,R, S}
S = stay in place

Does this change anything?

Clearly we can model “stay put” by inserting move right, then left.
why not the other way around?

Multitape Turing Machines

I Each tape has its own read/write head
I Input is initially on tape 1, other tapes blank
I Heads move/read/write simultaneously

δ : Q× Γk → Q× Γk × {L,R, S}k

One transition:

δ(qi, a1, . . . ak) = (qj , b1, . . . , bk, R, L, . . . , R)

Does this add expressive power?

Proving Equivalence: Simulation
Show that multitape TM M can be simulated by single-tape TM S

3.2 VARIANTS OF TURING MACHINES 177

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-
tape TM S. The key idea is to show how to simulate M with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing
their information on its single tape. It uses the new symbol # as a delimiter to
separate the contents of the different tapes. In addition to the contents of these
tapes, S must keep track of the locations of the heads. It does so by writing a tape
symbol with a dot above it to mark the place where the head on that tape would
be. Think of these as “virtual” tapes and heads. As before, the “dotted” tape
symbols are simply new symbols that have been added to the tape alphabet. The
following figure illustrates how one tape can be used to represent three tapes.

FIGURE 3.14

Representing three tapes with one

S = “On input w = w1 · · · wn:
1. First S puts its tape into the format that represents all k tapes

of M . The formatted tape contains

#
•

w1w2 · · · wn #
•␣#

•␣# · · · #.
2. To simulate a single move, S scans its tape from the first #,

which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way that M ’s transition function dictates.

3. If at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I Concatenate all tape contents onto one, with markers between
I Mark head locations with new “dotted” alphabet symbols
I Head moves right, simulating a round of moves
I If any tape needs extending, shift remaining contents right

Corollary: We can now show a language is Turing-recognizable by
finding a multi-tape Turing machine that recognizes it (possibly
easier)

Figure: Sipser, 3rd ed.

Nondeterministic Turing Machines

New transition function allows choice:
δ : Q× Γ→ P(Q× Γ× {L,R})

⇒ computation tree, accept if some branch accepts

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Will prove by constructing a three-tape TM that simulates all
nondeterministic choices of N

Simulating a Nondeterministic TM
Computation tree potentially infinite: ⇒ traverse breadth-first
ensures shortest accepting computation will be found

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulate N with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed by N ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Keep:

1. Unmodified copy of input
2. Working tape (simulation)
3. Place in computation tree (initially: root)

Figure: Sipser, 3rd ed.

Encoding Computation Branches

Start

3

321

2

/321

1

32

21

1

321

Assume max. degree (nondeterminism) = 3. Current path: 1 2 2.
Next paths: 1 2 3, 1 3 1, 1 3 2, etc.
I Copy original input (tape 1) to tape 2
I Simulate run of N on computation string from tape 3
I Update tape 3 to next string

Enumerators

Turing-recognizable languages are also called recursively
enumerable

Think Turing machine with attached printer
prints all strings in the language
may print infinite list, or halt if language is finite
repetitions are allowed (don’t matter)

Theorem: A language is Turing-recognizable iff some enumerator
enumerates it.

RE - Turing Equivalence

“⇒”: Obtain TM from enumerator E
I Run E. Compare each generated string with input w
I If w appears in the output of E, accept.

“⇐”: Obtain enumerator E from TM

Need to run TM on all strings of Σ∗: s1, s2, s3, . . .
Can’t go “depth-first” ⇒ run diagonally:

for 1 step on s1
for 2 steps on s1, s2
for 3 steps on s1, s2, s3, etc.
print any string if accepted (repetition OK)

Simulates running M in parallel on all input strings

