COMPSCI 501: Formal Language Theory

Lecture 12: Variants of Turing Machines
Marius Minea

marius@cs.umass.edu

University of Massachusetts Amherst

19 February 2019

Recap: Recognize vs. Decide

For given initial tape contents, a Turing machine could

» halt in the accept state
» halt in the reject state
» loop forever (not halt)

Recognize: accept all and only the strings in the language
(reject or loop otherwise)

Decide: TM never loops (either accepts or rejects)
Deciding is stronger than recognizing.

Some Turing-recognizable languages are not Turing-decidable
(will see later).

From DFAs to Turing Machines

Extra capabilities of TM:

1. can move both ways on tape (revisit input)
2. can write on tape
3. can use additional unlimited memory

Adding just (1): two-way automata (recall CS 250)
Result (surprising?): same as normal DFA.

Add (1) and (2): linear bounded automata
context-sensitive languages

Do Details Matter?

A Turing Machine is a 7-tuple . ..
What can change in the definition while keeping the essence?
Automata: DFA / NFA / e-transitions: same
Pushdown automata:
Normalizing moves (either push or pop): same expressiveness

Nondeterminism mattered !

“Robustness” of definition

First Change: Stay Put

Our looping constructions so far often “overshoot” by one:

“find first symbol of certain kind”
when found, must do something: move left or right
but perhaps we want to stay / start a sweep there

Change transition functionto 6 : @ x I' - Q x I x {L, R, S}
S = stay in place
Does this change anything?

Clearly we can model “stay put” by inserting move right, then left.
why not the other way around?

Multitape Turing Machines

» Each tape has its own read/write head
» Input is initially on tape 1, other tapes blank
» Heads move/read/write simultaneously

§:QxTF 5 QxTI*x{L,R,S}*
One transition:

3(gi,an,...ar) = (g5,01,.. ., b, R, L, ..., R)

Does this add expressive power?

Proving Equivalence: Simulation
Show that multitape TM M can be simulated by single-tape TM S

S s
. [#[o[1Jo]1]o]#[a]alal#[B]al#]u]...

» Concatenate all tape contents onto one, with markers between

» Mark head locations with new “dotted” alphabet symbols
» Head moves right, simulating a round of moves

» If any tape needs extending, shift remaining contents right

Nondeterministic Turing Machines

New transition function allows choice:
0:QxI' = P(QxTx{L,R})

=- computation tree, accept if some branch accepts
Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Will prove by constructing a three-tape TM that simulates all
nondeterministic choices of N

Simulating a Nondeterministic TM

Computation tree potentially infinite: = traverse breadth-first
ensures shortest accepting computation will be found

[oJoltJofuT... inputtape

‘x‘x‘#‘o‘l‘x‘u‘ ... simulation tape

[t]2]3]3]2]3]t]2]1]1]3]u]... addresstape

Keep:

1. Unmodified copy of input
2. Working tape (simulation)
3. Place in computation tree (initially: root)

Figure: Sipser, 3" ed

Encoding Computation Branches

Start
1 2 3

1 2
NN
1 2312

Assume max. degree (nondeterminism) = 3. Current path: 12 2.
Next paths: 123,131,132, etc.

» Copy original input (tape 1) to tape 2
» Simulate run of N on computation string from tape 3
» Update tape 3 to next string

Enumerators

Turing-recognizable languages are also called recursively
enumerable

Think Turing machine with attached printer
prints all strings in the language
may print infinite list, or halt if language is finite
repetitions are allowed (don't matter)

Theorem: A language is Turing-recognizable iff some enumerator
enumerates it.

RE - Turing Equivalence

“=": Obtain TM from enumerator E/

» Run E. Compare each generated string with input w
» If w appears in the output of F, accept.

“«<": Obtain enumerator E from TM

Need to run TM on all strings of ¥*: s1, s, s3, ...
Can't go “depth-first” = run diagonally:

for 1 step on s

for 2 steps on s1, s

for 3 steps on s1, s2, s3, etc.

print any string if accepted (repetition OK)

Simulates running M in parallel on all input strings

